无码人妻视频一区二区三区免_精品久久久久久无码一区二区_国产成人一二三区免费看_在线播放国产一区二区三区

歡迎來到優發表網

購物車(0)

期刊大全 雜志訂閱 SCI期刊 期刊投稿 出版社 精品范文

通信工程畢業論文范文

時間:2023-03-16 16:29:33

序論:在您撰寫通信工程畢業論文時,參考他人的優秀作品可以開闊視野,小編為您整理的7篇范文,希望這些建議能夠激發您的創作熱情,引導您走向新的創作高度。

第1篇

關鍵詞:通信工程;發展現狀;網絡安全;解決對策

1發展現狀

我國通信工程專業是源于電機系電機工程專業,并由有線電、無線通信、電子技術等專業相互滲透、相互補充而發展起來的一門綜合產業。在20世紀的初期,我國的多所大學就曾經先后建立過“無線電門”和“電訊組”,建國以后,我國高等學校在蘇聯高等教育的基礎上,對各高校的電機系和電機工程專業進行大規模的調整,為現代通信工程技術的人才培養積蓄著雄厚的力量。

通信工程在我國真正地進入快速發展是在20世紀80年代,這個時期從美、日、英等發達國家吹過來的信息革命這股颶風。為我國通信工程專業的發展增添了強勁的動力,也是從這時起,通信工程專業有了它現在的名稱。大量的技術成果如:晶體纖維生長與晶體光纖器件的研究,光纖高溫傳感器、光纖環形腔的細度及環形激光器的研究,窄線寬可調諧半導體激光器及相關技術等都走在了世界的前沿。

2存在的問題

隨著信息技術的廣泛應用。人類社會經歷著一場前所未有的全方位的深刻變革,網絡通信已廣泛地應用于政治、軍事,經濟及科學等各個領域,它改變了傳統的事務處理方式,對社會的進步和發展起著很大的推動作用,與此同時,人們也越來越意識到信息安全的重要性,因此,信息在網絡通信中的安全性、可靠性日趨受到通信網絡設計者與網絡用戶的重視。

鑒于信息安全開始對國家安全產生了重大的影響,需要準確認識信息安全的基本問題與表現方式,清晰了解保障信息安全所依賴的信息網絡化的客觀規律。從而做到有的放矢,以便真正發揮作用,在這里我們著重討論通信工程中的網絡通信安全。網絡通信安全一般是指網絡信息的機密性、完整性、可用性、真實性、實用性、占有性。從技術層面上來看,反映在物理安全、運行安全、數據安全、內容安全四個不同的層面中。而現在網絡通信的安全問題可以大體分為;內網通信安全和網絡問信息傳播安全兩個方面。

3解決對策

3.1內網通信安全

3.1.1采用安全交換機

由于內網的信息傳輸采用廣播技術,數據包在廣播域中很容易受到監聽和截獲,因此需要使用安全交換機。利用網絡分段及VLAN的方法從物理上或邏輯上隔離網絡資源,以加強內網的安全性。

3.1.2操作系統的安全

從終端用戶的程序到服務器應用服務、以及網絡安全的很多技術,都是運行在操作系統上的。因此,保證操作系統的安全是整個安全系統的根本。除了不斷增加安全補丁之外,還需要建立一套對系統的監控系統。并建立和實施有效的用戶口令和訪問控制等制度。

3.1.3使用網關

使用網關的好處在于網絡數據包的變換不會直接在內外網絡之間進行,內部計算機必須通過網關。進而才能訪問到Internett這樣操作者便可以比較方便地在服務器上對網絡內部的計算機訪問外部網絡進行限制。

3.1.4使用密鑰管理

在現實中,入侵者攻擊Internet目標的時候,90%會把破譯普通用戶的口令作為第一步。以Unix系統或Linux系統為例,先用“fjnger遠端主機名”找出主機上的用戶賬號。然后用字典窮舉法。

如果這種方法不能奏效,入侵者就會仔細地尋找目標的薄弱環節和漏洞,伺機奪取目標中存放口令的文件shad-OW或者passwd.然后用專用的破解DES加密算法的程序來解析口令。

在內網中系統管理員必須要注意所有密碼的管理。如口令的位數盡可能的要長;不要選取顯而易見的信息做口令;不要在不同系統上使用同一口令;輸入口令時應在無人的情況下進行;口令中最好要有大小寫字母、字符、數字;定期改變自己的口令:定期用破解口令程序來檢測shadow文件是安全。沒有規律的口令具有較好的安全性。

3.2網絡間信息傳播安全

所謂的網絡信息傳播安全主要是指網絡信息在傳播的過程中應保持信息本身的完整性、可用性和機密性。信息網絡的通信是由通信協議堆棧完成的,通信協議大致可分為應用層、傳輸層、網絡層、鏈路層和物理層,采用通信協議分層的方式對網絡通信進行安全控制可滿足信息網絡安全通信的需要,保障信息傳輸的機密性、完整性和可用性,接下來,我們就保證信息傳播安全的技術和方法進行探討。

3.2.1采用數字簽名技術

所謂“數字簽名”就是通過某種加密算法生成一系列符號及代碼組成電子密碼進行簽名,來代替書寫簽名或印章,對于這種電子式的簽名還可進行技術驗證,其驗證的準確度是一般手工簽名和圖章的驗證而無法比擬的。它能驗證出文件的原文在傳輸過程中有無變動。確保傳輸電子文件的完整性、真實性和不可抵賴性。這樣數字簽名就可用來防止有人修改信息等情況的發生,可以進一步保證信息的完整性、保密性,強化身份識別功能和不可抵賴性,同時數字簽名技術還可以提高交易的速度和準確性。

3.2.2數字集群系統網絡技術

數字集群系統的信息安全主要涉及用戶鑒權、加密、分級用戶管理、日志管理、虛擬專網。數字集群系統分為專網運營和共網運營兩種方式。數字集群網絡對于網絡的容量、通信覆蓋率、呼叫建立成功率等都有更高的要求。

數字集群通信系統經常應用于應急通信,因此其業務量具有突發性,擁塞控制對于數字集群通信網絡也就尤其的重要。擁塞控制可以通過多種方式來實現。數字集群網絡的網絡結構還具備更高的抗災變能力,對于重點地區進行基站的雙覆蓋,由于數字集群系統擔負著應急通信的重大使命。因此通常其社會效益要重于經濟效益,因此有必要投入一定的資金來提升網絡的可靠性。

3.2.3采用量子密碼信息加密技術

量子密碼術是密碼學與量子力學結合的產物,這種加密方法是用量子狀態作為信息加密和解密的密鑰。量子的一些神奇性質是量子密碼安全性的根本保證。到目前為止主要有三大類量子密碼實現方案:一是基于單光子量子信道中海森堡測不準原理的方案;二是基于量子相關信道中Bell原理的方案;三是基于兩個非正交量子態性質的方案。

量子密碼的研究進展順利。某些方面尤其是量子密鑰分發已經逐步趨于實用。面對未來具有超級計算能力的量子計算機,現行基于解自然對數及因子分解困難度的加密系統、數字簽章及密碼協議都將變得不安全。而量子密碼術則可達到經典密碼學所無法達到的效果。可以說,量子密碼是保障未來網絡通信安全的一種重要的技術,我們即將進入到一個量子信息時代。

第2篇

超寬帶(UWB,Ultra Wide Band)無線技術在無線電通信、雷達、跟蹤、精確定位、成像、武器控制等眾多領域具有廣闊的應用前景,因此被認為是未來幾年電信熱門技術之一。1990年,美國國防部首先定義了“超寬帶”概念,超寬帶無線通信開始得到美國軍方和政府部門的重視。2002年4月,美國FCC通過了超寬帶技術的商用許可,超寬帶無線通信在民用領域開始受到普遍關注。目前“超寬帶”的定義只是針對信號頻譜的相對帶寬(或絕對帶寬)而言,沒有界定的時域波形特征。因此,有多種方式產生超寬帶信號。其中,最典型的方法是利用納秒級的窄脈沖(又稱為沖激脈沖)的頻譜特性來實現[1]。

超寬帶無線電是對基于正弦載波的常規無線電的一次突破。幾十年來,無線通信都是以正弦載波為信息載體,而超寬帶無線通信則以納秒級的窄脈沖作為信息載體。其信號產生、調制解調、信號隱蔽性、系統處理增益等方面,具有獨特的優勢,尤其是能夠在密集的多徑環境下實現高速傳輸。由于脈沖持續時間很短,多徑分量在時域上不易重疊,多徑分辨能力高,通過先進的多徑分離技術或瑞克接收機,可以充分利用多徑分量。

目前,典型的超寬帶無線通信調制方式以TH-PPM、TH-PAM為主,本論文中,介紹超寬帶無線通信中的調制技術,主要討論TH-PPM、TH-PAM的基本原理,并且對比調制技術的優缺點,性能的好壞,并進行動態的仿真,從仿真圖中較清楚的研究調制方式,從而得出正確的結論,細致的研究超寬帶無線通信中的調制技術。

關鍵字:超寬帶 調制方式 PPM調制 PAM調制 OFDM調制

2 概述

2.1 總述

近幾年來,超寬帶短距離無線通信引起了全球通信技術領域極大的重視。超寬帶通信技術以其傳輸速率高、抗多徑干擾能力強等優點成為短距離無線通信極具競爭力和發展前景的技術之一。FCC(美國通信委員會) 對超寬帶系統的最新定義是:相對帶寬(在- 10dB 點處) (fH - fL)/fc > 20 %(fH ,fL ,fc分別為帶寬的高端頻率、低端頻率和中心頻率) 或者總帶寬BW> 500MHz。[1]它與現有的無線電系統比較,在花費更小的制造成本的條件下,能夠做到更高的數據傳輸速率(100~500MbPs) 、更強的抗干擾能力(處理增益50dB 以上) ,同時具有極好的抗多徑性能和十分精確的定位能力(精度在cm 以內) 。

2.2 UWB基本原理

發射超寬帶(UWB) 信號最常用和最傳統的方法是發射一種時域上很短(占空比低達0. 5 %) 的沖激脈沖。這種傳輸技術稱為“沖擊無線電( IR) ”.UWB - IR 又被稱為基帶無載波無線電,因為它不像傳統通信系統中使用正弦波把信號調制到更高的載頻上,而是用基帶信號直接驅動天線輸出的[6];由信息數據對脈沖進行調制,同時,為了形成所產生信號的頻譜而用偽隨即序列對數據符號進行編碼。因此沖擊脈沖和調制技術就是超寬帶的兩大關鍵所在。

2.2.1 脈沖信號

從本質上講,產生脈沖寬度為納秒級的信號源是UWB 技術的前提條件。目前產生脈沖信號源的方法有兩類: ①光電方法,基本原理是利用光導開關導通瞬間的陡峭上升沿獲得脈沖信號。由于作為激發源的激光脈沖信號可以有很陡的前沿,所以得到的脈沖寬度可達到皮秒(10 - 12 ) 量級。另外,由于光導開關是采用集成方法制成的,可以獲得很好的一致性,因此是最有發展前景的一種方法。②電子方法,利用微波雙極性晶體管雪崩特性,在雪崩導通瞬間,電流呈“雪崩”式迅速增長,從而獲得具有陡峭前沿的波形,成形后得到極短脈沖。在電路設計中,采用多個晶體管串行級聯,使用并行同步觸發的方式,加快了雪崩過程,從而達到進一步降低脈沖寬度的目的[7]。

沖激脈沖通常采用單周期高斯脈沖,典型的單周期高斯脈沖的時域和頻域數學模型分別表示為:

(2-1)

(2-2)

單周期脈沖的寬度在納秒級(0. 1~1. 5ns) ,重復周期為25~1000ns ,具有很寬的頻譜,如圖2-1 所示。實際通信中使用的是一長串的脈沖,由于時域中信號的周期性造成了頻譜的離散化,周期性的單脈沖序列頻譜中出現了強烈的能量尖峰。這些尖峰將會對信號構成干擾,通過數據信息和偽隨機碼來進行編碼P調制,改變脈沖與脈沖間的時間間隔,可以降低頻譜的尖峰幅度[2]。

圖2-1  單周期脈沖的時間域和頻率域的表示

2.2.2 UWB的調制技術

超寬帶系統中信息數據對脈沖的調制方法可以有多種。脈沖位置調制( PPM) 和脈沖幅度調制(PAM) 是UWB 最常用的兩種調制方式。通常UWB信號模型為:

(2-3)

其中,w ( t) 表示發送的單周期脈沖, dj , tj 分別表示單脈沖的幅度和時延。

a PAM- UWB

PAM是一種通過改變那些基于需傳輸數據的傳輸脈沖幅度的調制技術。在PAM調制系統中,一系列的脈沖幅度被用來代表需要傳輸的數據。任何形狀的脈沖都是通過其幅度調制使傳輸數據在{ - 1 , + 1}之間變化(對于雙極性信號) 或在M 個值之間變化(對于M 元PAM) 。增加傳輸脈沖所占的帶寬或減少脈沖重復頻率,都可以增加一個固定平均功率譜密度的UWB 系統所能達到的吞吐量和傳輸距離,可以看出這一效果與增加傳輸功率的峰值的效果是相似的。[8]

采用脈沖幅度調制(PAM)的超寬帶信號波形如下:[4]

(2-4)

其中, dj 是信息序列, Tf 是脈沖重復周期。根據dj 的不同取值, 可將PAM調制方式分為以下三種:

(1) OOK(發送數據為1 ,UWB 信號的幅度為1 ;發送數據為0 ,UWB 信號的幅度為0) ;

(2)PPAM(發送數據為1 ,UWB 信號的幅度為β1 ;發送數據為0 ,UWB 信號的幅度為β2) ;

(3)BPSK(發送數據為1 ,UWB 信號的幅度為1 ;發送數據為0 ,UWB 信號的幅度為- 1) 。

對于這三種方式,在超寬帶的PAM調制方式中多采用BPSK方式。

b PPM- UWB

脈沖位置調制(PPM) 又稱時間調制(TM) ,是用每個脈沖出現的位置落后或超前某一標準或特定時刻來表示某個特定信息的[3]。二進制PPM 是超寬帶無線通信系統經常使用的一種調制方法,相對其它調制方法來說也是較早使用的一種方法。采用PPM的一個重要原因是它能夠使用零相差的相關接收機來接收檢測信號,而這種接收機有著非常好的性能。采用脈沖位置調制( PPM) 的超寬帶信號波形如下:

(2-5)

其中, dj 取0 或1 ,δ為調制因子, 與脈沖寬度Tm (1/Tf ) 是一個數量級。當發送數據為1 時脈沖就會相應滯后一個時延δ。

圖2-2 給出了上述四種調制方法的信號波形圖,對這四種調制方式給出了一個比較直觀的描述。

除了這些對脈沖的調制方法外,用偽隨機碼或偽隨機噪聲(PN) 對數據符號進行編碼以得到所產生信號的頻譜時,根據編碼的不同即擴頻和多址技術不同,超寬帶系統又被分為跳時的超寬帶系統(TH - UWB) 、直擴的超寬帶系統(DS - UWB) 、跳頻的超寬帶系統(FH - UWB) 和基帶多載波超寬帶系統(MC - UWB) 等[9]。

圖2-2  不同調制方式的信號波形[4]

2.3 UWB 技術特點

由于UWB 與傳統通信系統相比,工作原理迥異,因此UWB 具有如下傳統通信系統無法比擬的技術特點[4]:

(1)系統容量大。香農公式給出C = Blog2 (1 +S/N) 可以看出,帶寬增加使信道容量的升高遠遠大于信號功率上升所帶來的效應,這一點也正是提出超寬帶技術的理論機理。超寬帶無線電系統用戶數量大大高于3G系統。

(2)高速的數據傳輸。UWB 系統使用上GHz 的超寬頻帶,根據香農信道容量公式,即使把發送信號功率密度控制得很低,也可以實現高的信息速率。一般情況下,其最大數據傳輸速度可以達到幾百Mbps~1Gbps。

(3)多徑分辨能力強。UWB 由于其極高的工作頻率和極低的占空比而具有很高的分辨率,窄脈沖的多徑信號在時間上不易重疊,很容易分離出多徑分量,所以能充分利用發射信號的能量。實驗表明,對常規無線電信號多徑衰落深達10~30dB 的多徑環境,UWB 信號的衰落最多不到5dB。

(4)隱蔽性好。因為UWB 的頻譜非常寬,能量密度非常低,因此信息傳輸安全性高。另一方面,由于能量密度低,UWB 設備對于其他設備的干擾就非常低。

(5)定位精確。沖激脈沖具有很高的定位精度,采用超寬帶無線電通信,可在室內和地下進行精確定位,而GPS 定位系統只能工作在GPS 定位衛星的可視范圍之內。與GPS 提供絕對地理位置不同,超短脈沖定位器可以給出相對位置, 其定位精度可達厘米級。

(6)抗干擾能力強。UWB 擴頻處理增益主要取決于脈沖的占空比和發送每個比特所用的脈沖數。UWB 的占空比一般為0. 01~0. 001 ,具有比其它擴頻系統高得多的處理增益,抗干擾能力強。一般來說,UWB 抗干擾處理增益在50dB 以上。

(7)低成本和低功耗。UWB 無線通信系統接收機沒有本振、功放、鎖相環( PLL) 、壓控振蕩器(VCO) 、混頻器等, 因而結構簡單,設備成本將很低。由于UWB 信號無需載波,而是使用間歇的脈沖來發送數據,脈沖持續時間很短,一般在0. 20ns~1. 5ns之間,有很低的占空因數,所以它只需要很低的電源功率。一般UWB 系統只需要50~70mW 的電源,是藍牙技術的十分之一[10]。盡管如此,UWB 在技術上面臨一定的挑戰, 還有諸多技術的問題有待研究解決,比如需要更好地理解UWB 傳播信道的特點,建立信道模型,解決多徑傳播;需要進一步研究高速脈沖信號的生成、處理等技術;研究新的調制技術,進一步降低收發結構的復雜度等。

2.4 UWB發射機和接收機組成框圖

2.4.1 UWB發射機組成框圖

UWB發射機直接發送納秒級脈沖來傳輸數據而不需使用載波電路。所以,UWB發射機比現有的無線發射設備要簡單得多。TH-UWB發射機組成框圖如圖2-3所示[5]。

圖2-3 UWB發射機組成框圖

調制后的數據與偽碼產生器生成的偽碼一起送入可編程延遲電路,可編程延遲電路產生的時延控制脈沖信號發生器的發送時刻,脈沖信號發生器輸出的UWB信號由天線輻射出去。脈沖信號產生電路的一個關鍵部分是天線,它的作用相當于一個濾波器。

2.4.2 UWB接收機組成框圖

TH-UWB接收機采用相關接收方式,接收機框圖如圖4所示。圖4中虛線內的部分是相關器。它由乘法器、積分器和取樣/保持電路三部分組成[5]。

接收機與發射機類似,兩者的區別在于接收機的基帶信號處理器從取樣/保持電路中解調數據,基帶信號處理器的輸出控制可編程時延電路,為可編程時延電路提供定時跟蹤信號,保證相關器正確解調出數據。

圖2-4 UWB接收機組成框圖

2.5 UWB 技術的應用前景

UWB 系統在很低的功率譜密度的情況下,UWB具有巨大的數據傳輸速率優勢,最大可以提供高達1000Mbps 以上的傳輸速率,使UWB 同其它短距離無線通信系統的技術優勢非常明顯,如表1 所示。現有的各種無線解決方案(例如802. 11 ,Bluetooth等) 的速率均低于100Mbit/s ,UWB 則在10m 左右的范圍之內打破了這一限制,UWB 的應用將使人們可以擺脫更多線纜的牽絆,通信因而變得更為方便[6]。

2.6 結束語

無線通信已經迅速滲入我們的生活當中,對容量不斷增長的要求需要一種不對現有的通信系統造成影響的新的無線通信方案,超寬帶脈沖無線電系統正好滿足了這一要求。UWB 技術對于無線短距離的高速數據通信是非常有競爭力的,隨著研究的深入,憑借多方面的優勢,它將在很多領域占有一席之地。特別是短距離傳輸的后3G領域,UWB 將有廣闊的發展空間[8]。

表1  幾種短距離無線通信比較

IEEE802. 11a

Bluetooth

UWB

工作頻率

2. 4GHz

2. 402~2. 48GHz

3. 1~10. 6GHz

傳輸速率

54Mbps

小于1Mbps

大于480Mbps

通信距離

10m~100m

10m

小于10m

發射功率

1 瓦以上

1 毫瓦~100毫瓦

1 毫瓦以下

容量空間

80kbps/m2

30kbps/m2

1000kbps/m2

應用范圍

無線局域網

家庭和辦公室互連

近距離多媒體

終端類型

筆記本、臺式電腦、掌上電腦、因特網網關

筆記本、移動電話、掌上電腦、移動設備

無線電視、DVD , 高速因特網網關

3 MATLAB 軟件工具介紹

3.1 MATLAB語言的概述

MATLAB是一種科學計算軟件,適用于工程應用各領域的分析設計與復雜計算,它使用方便,輸入簡捷,運算高效且內容豐富,很容易由用戶自行擴展。因此,它已成為大學教學和科學研究中最常用且必不可少的工具。

MATLAB是“矩陣實驗室”(MATrix LABoratoy)的縮寫,它是一種以矩陣運算為基礎的交互式程序語言,著重針對科學計算、工程計算和繪圖的需求。與其他計算機語言相比,其特點是簡潔和智能化,適應科技專業人員的思維方式和書寫習慣,使得編程和調試效率大大提高。它用解釋方式工作,鍵入程序立即得出結果,人機交互性能好,為科技人員所樂于接受。特別是它可適應多種平臺,并且隨計算機硬、軟件的更新而用時升級。因而,MATLAB語言是數值計算用得最頻繁的電子信息類學科工具。它大大提高了課程教學、解題作業、分析研究的效率。

3.2 MATLAB的歷史

在1980年前后,美國的Cleve Moler博士在New Mexico大學講授線性代數課程時,發現應用其他高級語言編程極為不便,便構思并開發了MATLAB(MATrix LABoratory,矩陣實驗室),它是集命令翻譯、科學計算于一身的一套交互式軟件系統,經過在該大學進行了幾次的試用之后,于1984年推出了該軟件的正式版本。它是以著名的線性代數軟件包LINPACK和特征計算軟件包EISPACK中的子程序為基礎發展而成的一種開放型程序設計語言,其基本的數據單元是一個維數不加限制的矩陣,這就允許用戶可以根據數值計算問題的復雜程序,對問題進行分段甚至逐句編程處理,顯然這與C、FORTRAN等傳統高級語言完全不同。在MATLAB下,矩陣的運算變得異常的容易,后來的版本中又增添了豐富多彩的圖形圖像處理及多媒體功能,使得MATLAB的應用范圍越來越廣泛,Moler博士等一批數學家與軟件專家組建了名為MathWorks的軟件開發公司,專門擴展并改進MATLAB。

為了準確地把一個控制系統的復雜模型輸入給計算機,然后對之進行進一步的分析與仿真,1990年MathWorks軟件公司為MATLAB提供了新的控制系統模型圖形輸入與仿真工具,并定名為SIMULAB,該工具很快在控制界得致函廣泛的使用。但因其名字與著名的軟件SIMULA類似,所以在1992年正式改名為SIMULINK。此軟件有兩個明顯的功能:仿真與連接,亦即可以利用鼠標在模型窗口上畫出所需的控制系統模型,然后利用該軟件提供的功能來對系統直接進行仿真。很明顯,這種做法使得一個很復雜系統的輸入變得相當容易。SIMULINK的出現,更使得MATLAB的控制系統的仿真與其在CAD中的應用打開了嶄新的局面。

3.3 MATLAB語言的特點

MATLAB語言有以下特點。

(1) 起點高

每個變量代表一個矩陣,以矩陣運算見長。當前的科學計算中,幾乎無處不用矩陣運算,這使它的優勢得到了充分的體現。

(2) 人機界面適合科技人員

MATLAB的語言規則與筆算式相似。MATLAB的程序與科技人員的書寫習慣相近,因此,易寫易讀,易于在科技人員之間交流。矩陣的行列數無需定義。MATLAB不必有階數定義,輸入數據的行列數就決定了它的階數。鍵入算式立即得到結果,無需編譯。MATLAB是以解釋方式工作的,即它對每條語句解釋后立即執行,若有錯誤也立即做出反應,便于編程者立即改正。這些都大大減輕了編程和調試的工作量。

(3) 強大而簡易的做圖功能

能根據輸入數據自動確定坐標繪圖,能規定多種坐標系,(極坐標系、對數坐標系等),能繪制三維坐標中的曲線和曲面,可設置不同顏色、線型、視角等。如果數據齊全,通常只需一條命令即可出圖。

(4) 智能化程度高

繪圖時自動選擇坐標,大大方便了用戶;做數值積分時自動按精度選擇步長;自動檢測和顯示程序錯誤的能力強,易于調試。

(5) 功能豐富,可擴展性強

MATLAB軟件包括基本部分和專業擴展兩大部分。

基本部分包括矩陣的運算和各種變換、代數和超越方程的求解、數據處理和傅立葉變換及數值積分等等。可以充分滿足大學理工科學生的計算需要。

擴展部分稱為工具箱。它實際上是用MATLAB的基本語句編成的各種子程序集,用于解決某一方面的專門問題,或實現某一類的新算法。現在已經有控制系統、信號處理、圖像處理、系統辨識、模糊集合、神經元網絡及小波分析等工具箱,并且向公式推導、系統仿真和實時運行等領域發展。

MATLAB的核心內容在于它的基本部分,所有的工具箱子程序都是用它的基本語句編寫的。

3.4 MATLAB仿真

通過利用所學的理論知識,建立一個完整、準確的需求說明,清楚、準確地提出仿真試驗所要解決的問題。

對所提出的仿真系統給出詳細定義,明確系統中的模塊、系統構成、模塊之間的相互關系,系統的輸入輸出、邊界條件以及系統的約束條件,并明確仿真所要達到的目標。

根據仿真系統分析的結果,確定系統中的參數、變量及其互之間的關系,并以數學形式將這些關系描述出來,從而構成仿真系統的數學模型。數學建模是系統仿真中最關鍵的一步,所建立的數學模型必須盡可能準確地反映所關心的真實系統的特性,而又不能過于復雜,以免降低模型的效率,增加不必要的計算過程,即建模需要根據求解問題的要求,在模型的近似程度與復雜程度之間折中。電子與通信系統的數學模型通常以方框圖形式或數學方程形式來表達。

根據建立的數學模型所需要的數據元素,收集與模型系統有關的數據。根據數學模型建立系統的計算機仿真模型,收集數據,確定其中各子模塊的結構,輸入輸出接口,輸入輸出的數據表達形式,數據的存儲方式等。然后編制相應的程序流程,用MATLAB語言實現。

仿真模型驗證的目的是確定計算機仿真模型是否準確表達了數學模型。仿真模型驗證通常的方法是將數學模型的解析結果(或理論結果)與仿真所得到的數值結果相比較來完成的;或通過已知的系統輸入輸出結果,對比在相同條件下的系統仿真結果來驗證仿真模型的正確性。

根據仿真試驗設計的方案,讓計算機執行計算,并在執行計算的過程中了解仿真模型對于各種不同輸入信號以及不同參數和仿真機制下的輸出,得出試驗數據,從而預測系統在實際環境中的運行情況。

對仿真模型的運行階段所產生的數據進行分析,其目的是從運行階段所產生的數據中找出系統運行規律,對仿真系統的性能做出評價,為系統方案的最終決策提供輔助支持。對仿真結果進行分析,對仿真數據的可靠性、一致性、置信度等做出判定,最終將仿真結果以曲線、圖表和文字等形式形成論文。

4 超寬帶無線的調制技術

發射超寬帶(UWB)信號最常用和最傳統的方法是發射時域上很短的脈沖。這種傳輸技術稱為“沖激無線電”(Impulse Radio,簡寫為IR)。信息數據符號對脈沖進行調制,其調制方式可以有多種。脈沖位置調制(PPM)和脈沖幅度調制(PAM)是最常用的兩種調制方式。除了要對脈沖進行調制外,為了形成所產生的信號的頻譜,還要用偽隨機碼或偽隨機噪聲(PN)對數據符號進行編碼。一般是,編碼后的數據符號引起脈沖在時間軸上的偏移,這就是所謂的跳時超寬帶(TH-UWB,Time-Hopping UWB)。直接序列擴譜(DS-SS)就是編碼后的數據符號對基本脈沖的幅度進行調制,這在沖激無線電(IR)中被稱為直接序列超寬帶(DS-UWB,Direct-Sequence UWB),這種調制方式似乎非常有吸引力[1]。

對于超寬帶信號,也可以通過很高的數據速率來產生而根本不需要具備脈沖的特性。只要UWB定義所要求的相對帶寬或最小帶寬在整個傳輸過程中得到滿足,那么,靠發射高速率數據而不是窄脈沖所產生的具有UWB射頻帶寬的系統,就不應該被排除在UWB系統之外。諸如正交頻分復用(OFDM),在數據速率適當的情況下也可產生UWB信號。因此,OFDM也是一種超寬帶的調制方式。

本文主要討論TH-UWB、DS-UWB和OFDM調制方式。

4.1 PPM-TH-UWB 調制方式

4.1.1 跳時超寬帶信號的產生

在結合了二進制PPM的TH-UWB(二進制PPM-TH-UWB或者PPM-TH-UWB)中,UWB信號的產生可以系統地描述如下(參見圖4-1描繪的發射鏈路) [1]。

SHAPE \* MERGEFORMAT

圖4-1 PPM-TH-UWB信號的發射方案

給定待發射的二進制序列b=(…,b0,b1,…,bk,bk+1,…),其速率Rb=1/Tb (b/s),圖4-1中的第一個模塊使每個比特重復Ns次,產生一個二進制序列:

(…,b0,b0,…,b0,b1,b1,…,b1,…,bk,bk,…,bk,bk+1,bk+1,…,bk+1,…)=

(...,a0,a1,…aj,aj+1,…)=a

新的比特速率Rcb=Ns/Tb=1/Ts (b/s)。這個模塊引入了冗余,其實是一種被稱為重復碼的(Ns,1)分組編碼器。一般術語上稱為信道編碼。

第二個模塊是傳輸編碼器,就是應用整數值碼序列c=(…,c0,c1,…,cj,cj+1,…)和二進制序列a=(…,a0,a1,…,aj,aj+1,…),產生一個新序列d,序列d的一般元素表達式如下:

dj=cjTc+aj (4-1)

式中,Tc和 是常量,對所有的cj滿足條件cjTc+ <Ts,通常 <Tc。

這里的d是一個實數值序列,而a是二進制序列,c是整數值序列.現在我們遵循最常用的方法,假定c是企業界隨機碼序列,它的元素cj是整數,且滿足

0 cj Nh-1。 碼序列c可能為周期序列,其周期表示為Np。兩種特殊情況值得討論。第一種,碼是非周期的,即 ;第二種是Np=Ns,這是最常用的一種,這時的編碼周期與二進制碼重復的次數相等。我們必須牢記:傳輸編碼扮演了碼分多址編碼和發射信號的頻譜形成雙重角色[1]。

實數值序列d輸入到第三個模塊,即PPM調制模塊,產生了一個速率為Rp=Ns/Tb=1/Ts(脈沖/s)的單位脈沖(Dirac pulses ) 序列。這些脈沖在時間軸上的位置為 ,因此脈沖位置在jTs基礎上偏移了dj,脈沖的發生時間也可表示為( )。注意是碼序列對c信號引入了TH位移,也正因為此,c被稱為TH碼。還要注意一點就是由PPM調制引起的位移 ,通常比TH碼引起的位移cjTc小得多,即: ,cj=0除外。Tc稱為碼片時間(chip time)。

最后一個模塊是脈沖形成濾波器,其沖激響應為。必須保證脈沖形成濾波器輸出的脈沖序列不能有任何的重疊。

以上所有系統級聯以后的輸出信號 可表示如下:

(4-2)

比特間隔或比特持續時間,也即用于傳輸一個比特的時間Tb,可表示為:Tb=NsTs。在式(4-2)中,cjTc定義了脈沖的隨機性或者說是相對于Ts整數倍時刻的抖動。如果用隨機TH抖動 來表示由TH編碼cjTc引起的時間上的位移,并假定 在0和 之間分布,則可得到:

(4-3)

正如前面提到的, 通常遠大于 。這兩個量的整體效果是產生一個分布在0和 之間的時間隨機位移量,用 表示這個時間隨機位移,可得發射信號的如下表達式:

(4-4)

更一般性地概括式(4-2)所表示的信號,其思想是:對于信息比特“0”和“1”,可以發射兩個不同的脈沖波形 和 來分別表示。上面分析的PPM調制的例子,引入了 這個時間位移量,它的值根據它所代表的比特而有所不同,其實是上述思想的特殊例子,其中的 是 位移以后的波形。一種更一般的表達式:

(4-5)

當將 設置為- 時,式(4-5)也表示了PAM和TH-UWB的結合,即PAM-TH-UWB模型[1]。

4.1.2 PPM-TH-UWB的發射鏈路 系統模型如圖4-2所示

SHAPE \* MERGEFORMAT

圖4-2 PPM-TH-UWB 發射器的系統模型

圖4-2中的第一個模塊表示二進制源。這個模塊的輸出是發射到物理信道的二進制流。第二個模塊表示重復碼編碼器。二進制流的每一個比特都被重復次。第三個模塊仿真TH編碼和二進PPM。這里考慮偽隨機TH碼。最后一個模塊是脈沖形成。這個模塊的沖激響應表示要發射的UWB信號的基本脈沖波形[1]。

4.1.3 PPM-TH-UWB 仿真結果及其分析

圖(4-3)顯示了參數設置如下時所產生的UWB信號

以dBm為單位的平均發射功率Pow, 信號的抽樣頻率fc, 由二進制源產生的比特數numbits, 平均脈沖重復時間Ts(單位為秒),每個比特映射的脈沖數Ns, 碼片時間Tc(秒), 跳時碼的碼元最大值Nh和周期Np,沖激響應持續時間Tm, 脈沖波形形成因子tau(秒), PPM時移dPPM(秒)。

Stx: Pow=-30, fc=50e9, numbits =2, Ts=3e-9, Ns=5,

Tc=1e-9, Nh=3, Np=5, Tm=0.5e-9, tau=0.25e-9,

dPPM=0.5e-9

由圖4-3中可以看到輸出序列的前五個脈沖在其對應時隙的中間位置,而后五個脈沖則在其對應時隙的起始位置。

圖4-3 PPM-TH-UWB 發射機產生的信號

圖4-4 PPM-TH-UWB的幅度譜

由圖4-4可以看出,TH編碼和PPM調制都對幅度譜的高斯形狀產生扭曲。PPM-TH-UWB信號的幅度譜將完全包含在無TH編碼和無PPM調制的幅度譜包絡中,這是因為以同樣的形狀和同樣的平均功率傳輸等間隔脈沖的結果。

4.2 PAM-DS-UWB調制方式

4.2.1 直接序列超寬帶信號的產生

直接序列擴譜(DS-SS)是一種著名的數字調制方式。這里,我們先回顧DS-SS的基本原理,并把主要精力放在它在UWB的延伸方面。

具有UWB特性的信號可以通過下面的過程產生:首先,用偽隨機碼或二進制PN碼序列對要發射的二進制進行編碼;其次,對一串窄脈沖進行幅度調制。這一過程可以看做是目前使用DS-SS系統的一種極端方式,此時脈沖在時域上是具有典型時間的奈奎斯特型脈沖或方波。讓脈沖寬度遠遠小于切普間隔,很容易得到DS-SS-UWB的解析表達式。在傳統的DS-SS系統中,RF發射信號是對載波進行幅度調制后得到的,通常使用二進制相移鍵控BPSK方式。而在DS-UWB中,如果沒有專門的要求,這一過程可省略。[1]

更詳細地,上述信號可以通過如下過程產生(見圖所示發射鏈路)。

SHAPE \* MERGEFORMAT 圖4-5 PAM-DS-UWB 信號的發射方案

假定待發射的二進制序列b=(…,b0,b1,…,bk,bk+1,…),其速率為Rb=1/Tb (b/s),圖4-5中的第一個系統將每個比特重復Ns次,得到序列:(…,b0,b0,…,b0,b1,b1,…,b1,…,bk,bk,…,bk,bk+1,bk+1,…,bk+1,…)=a*,其速率為Rcb=Ns/Tb=1/Ts (b/s)。與TH方式相似,系統引入的冗余相當于一個參數為(Ns,1)的重復碼編碼器。

第二個系統將a*序列轉換成只含有正值和負值元素的序列a=(…,a0,…,a1,…,aj,aj+1,…),轉換公式為:( ).

發射編碼器將一個由 1組成、周期為Np的二進制碼序列c=(…,c0,c1,…,cj,cj+1,…)應用到序列a=(…,a0,…,a1,…,aj,aj+1,…),產生一個新序列d=a·c,其組成元素dj=ajcj。通常假定Np等于Ns,更具一般性的假定是Np等于Ns的整數倍。注意,序列d的元素值為 1,這一點與序列a相同,其速率為Rc=Ns/Tb=1/Ts (b/s)。

序列d進入第三個系統——PAM調制器,產生一個速率為Rp=Ns/Tb=1/Ts (脈沖/s)的單位脈沖(Dirac脈沖 )序列,其位置在jTs處[6]。

調制器輸出的信號進入沖洲響應為p(t)的脈沖形成濾波器。在傳統的DS-SS系統中,沖激響應p(t)是持續時間為Ts的矩形脈沖。而在DS-UWB系統中,與TH方式相似,p(t)是持續時間遠小于Ts的脈沖。

以上系統級聯后的輸出信號可以表示為

(4-6)

注意,與TH方式相似,比特間隔或比特持續時間,即傳輸一個比特所用的時間是Tb=NsTs。

輸出的波形顯然是一個PAM波形。很容易知道,由于沒有時移而且脈沖以規則的時間間隔出現,計算式(4-6)所示信號的PSD要比計算式(4-2)所示信號的PSD更容易。

上述方式的一種變形是使用PPM調制器代替PAM調制器,得到的信號可表示為:

(4-7)

注意到在式(4-7)中,由于碼的偽隨機特性,編碼會起到白化頻譜的作用。

4.2.2 PAM-DS-UWB 發射鏈路 其系統模型如圖4-6所示.

SHAPE \* MERGEFORMAT

圖4-6 PAM-DS-UWB 發射機系統模型

圖4-6中的前兩個模塊分別表示二進制源和重復碼編碼器。第三個模塊是在重復碼編碼器的輸出端實現DS編碼和二進制PAM調制。我們考慮偽隨機DS碼,分配給一般用戶的是長度為NP的二進制碼序列。最后一個模塊是脈沖形成器[1]。

4.2.3 PAM-DS-UWB 仿真結果及其分析

圖4- 7 由PAM-DS-UWB發射機產生的信號

圖(4-7)顯示了參數設置如下時所產生的UWB信號

以dBm為單位的平均發射功率Pow, 信號的抽樣頻率fc, 由二進制源產生的比特數numbits, 平均脈沖重復時間Ts(單位為秒),每個比特映射的脈沖數Ns, 碼片時間Tc(秒), 跳時碼的碼元最大值Nh和周期Np,沖激響應持續時間Tm, 脈沖波形形成因子tau(秒), PPM時移dPPM(秒)。

Stx: Pow=-30, fc=50e9, numbits =2, Ts=2e-9,

Ns=10, Np=10, Tm=0.5e-9,

tau=0.25e-9,

這個信號由兩組脈沖序列組成,每組包含10個脈沖,每組映射信息源的一個比特。從圖4-7中可以看出每二組的10個脈沖與第一組的10個脈沖在極性上是相反的。

圖4-8 PAM-DS-UWB的幅度譜

由圖4-8可以看出,幅度譜的包絡具有基本脈沖的傅氏變換的形狀,即高斯形狀。且Np(信號每比特發射脈沖數)值越大,圖形分布越寬,即幅度峰值越小。

4.3 OFDM調制技術

4.3.1 概述

多頻帶(MB)方式與本章前兩節分析研究的IR原理不同。根據2002年,FCC公布的UWB定義,帶寬超過500MHz的信號都是UWB信號。因此,按照FCC規定的頻帶范圍3.1~10.6GHz,將此7.5 GHz的帶寬分割成最小帶寬為500MHz的若干個頻帶。為了盡量減小同窄帶通信系統的相互干擾,UWB采用較小的功率,于是UWB信號對于窄帶通信系統來說相當于熱噪聲,并不被窄帶通信系統的接收機檢測到,也可以避免特定頻帶上的非人為干擾[1]。

在每個子頻帶內可以使用不同的數據調制類型,并不一定要用IR方式,正確的頻譜帶寬可以通過合適的比特速率實現。應用最廣泛的是眾所周知的正交頻分復用(OFDM)。

4.3.2 多頻段OFDM-UWB信號產生

一個已調的OFDM信號由調制在不同載波頻率 上的同個并行發射的信號組成。這些載波等間隔地位于頻域上,其間隔為 。OFDM調制器輸入的二進制序列每K比特編為一組,以產生具有N個符號的數據塊{ },這里假定 是L個可能的取值中的一個,K=N1bL。最后,每個符號調制一個不同的載波。為了并行傳輸數據塊的N個符號,不同的調制載波信號在頻率上必須正交[8]。

所有調制器使用相同的矩形波,其持續時間為T:

(4-8)

如果符號 在星座圖中的點用 表示,OFDM信號中有N個符號的數據塊的表達式如下[1]:

(4-9)

而相應的復包絡是

(4-10)

其中 ,S(t)是周期為T0的周期函數。

式(4-9)中OFDM信號的數字變換相當于傳輸式(4-10)中復數包絡的抽樣值,也就是說傳輸序列可表示如下:

(4-11)

tc是抽樣周期。

仿真OFDM調制信號,考慮的是OFDM各個載波使用QPSK調制的情況。仿真整個發射鏈路,產生式(4-9)的信號。

4.3.3 OFDM仿真結果及其分析 要發射的總比特數numbits; 調制信號的中心頻率fp; 抽樣頻率fc; 每個符號在其相應載波上的傳輸時間T0; 循環前綴的持續時間TP;保護間隔時間TG, 矩形脈沖響應的幅度為A, OFDM系統的子載波數N。

(1) numbits=8; fp=1e9; fc=50e9; T0=242.4e-9;

TP=60.6e-9; TG=70.1e-9; A=1; N=4;

圖4-9 OFDM-UWB信號

圖4-10 OFDM-UWB幅度譜

圖4-10中的幅度譜由子載波的幅度譜疊加而成。

(2)numbits=8; fp=1e9; fc=50e9; T0=242.4e-9;

TP=0; TG=50e-9; A=1; N=2;

圖4-11 OFDM-UWB信號圖

圖4-11 OFDM-UWB信號幅度譜

對比以上兩圖,可以看出,在同樣的時間里為了傳輸更多的符號,是以增加帶寬為代價的,也就是增加子載波的數量。

4.4 總結

通過一系列的仿真,我們可以得出以下結論:PAM、PPM兩種調制方法主要是為了進行信息數據符號對脈沖的調制,而信號中的偽隨機TH碼和DS碼主要是為了產生信號的頻譜,使信號的功率譜密度在采用偽隨機碼調制后變得更加平滑,不能干擾到其它已經存在的窄帶系統[9]。

OFDM具有良好的抗多徑干擾性能,通過頻率的合理選擇,能夠同現存的窄帶系統和開放頻段的通信系統具有很好的共存性,同傳統的超寬帶系統相比有很大的優勢[11]。

5 性能分析及應用前景

5.1 脈位調制(PPM)和脈幅調制(PAM)

脈位調制(PPM)是一種利用脈沖位置承載數據信息的調制方式。按照采用的離散數據符號的狀態數可以分為二進制PPM(2PPM)和多進制(MPPM)。在這種調制方式中,一個脈沖重復周期內脈沖可能出現的位置有2個或M個,脈沖位置與符號狀態一一對應。根據相鄰脈位之間距離與脈沖寬度之間關系,又可分為部分重疊的PPM和正交PPM(OPPM)。在部分重疊的PPM中,為保證系統傳輸可靠性,通常選擇相鄰脈位互為脈沖自相關函數的負峰值點,從而使相鄰符號的歐氏距離最大化。在OPPM中,通常以脈沖寬度為間隔確定脈沖位置。接收機利用相關器在相應位置進行相干檢測。鑒于UWB系統的復雜度和功率限制,實際應用中,常用的調制方式為2PPM或2OPPM[3]。

PPM的優點在于:它僅需要根據數據符號控制脈沖位置,不需要進行脈沖幅度和極性的控制,便于以較低的復雜度實現調制與解調。因此,PPM是UWB系統廣泛采用的調制方式。但是,由于PPM信號為單極性,其輻射譜中往往存在幅度較高的離散譜線。對此超寬帶信號的幅度譜仿真也證明了這一點。如果不對這些譜線進行抑制,將很難滿足FCC對輻射譜的要求[10]。

脈幅調制(PAM)是數據通信系統最為常用的調制方式之一。在UWB系統中,考慮到實現復雜度和功率有效性,不宜采用多進制PAM(MPAM)。UWB系統常用的PAM有兩種方式:開關鍵控(OOK)和二進制相移鍵控(BPSK)。前者可以采用非相干檢測降低接收機復雜度,而后者采用相干檢測可以更好地保證傳輸可靠性[3]。

當發射能量相同時,使用二進制PAM調制的信號可以比使用二進制PPM調制的信號獲得更好的性能。

5.2 OFDM調制

OFDM有很多優點:能夠提供較大的系統容量,具有較強的抗多徑干擾、抗頻率選擇性衰落和頻率擴散能力,適應多徑和移動信道傳播條件,能夠適應不同設計需求,靈活分配數據容量和功率,可提供靈活的高速和變速綜合數據傳輸可以實現較高的安全傳輸性能,允許數據在復數的高速的射頻上被編碼。由于OFDM技術的良好性能使得它在無線通信系統中得到了廣泛的應用[12]。

OFDM技術是將頻道資源分成若干個子信道,每個子信帶再采用一定的調制技術,提高頻率利用率。OFDM可與PPM、PAM等結合使用,將會有性能更好的調制技術出現。

5.3 UWB的應用前景

超寬帶技術在通信、雷達和無線定位等領域都將有廣闊的應用前景。近年來,人們對超寬帶技術深入的研究使超寬帶技術在系統理論、功率放大器、脈沖的產生與接收、同步、集成電路等方面取得了重大進步,尤其是在超寬帶無線產生領域的技術進步,使超寬帶通信成為無線網絡的重要組成部分成為可能。

相對于傳統的窄帶無線通信系統,超寬帶無線產生系統具有諸多優點和潛力,使超寬帶無線產生成為中短距無線網絡的理想接入技術。根據產生速率不同,擠兌超寬帶無線傳輸系統也具有不同的特點和應用領域。

利用超寬帶技術可以提供高數據率傳輸的能力與定位功能,可以設計依賴定位信息優化網絡資源管理的WPAN或WLAN,并應用于多媒體傳輸、計算機通信和家庭娛樂等領域。

利用脈沖超寬帶信號對障礙物的良好穿透特性與精確測距功能,可以設計既具有通信功能也具有定位功能的超寬帶脈沖無線通信與定位系統。該系統包括傳輸距離遠(通信速率低)、頒布式移動定位、便攜、超低成本、超低功耗、定位可靠性和精度高等特點。因而可以廣泛用于傳感器網絡、消防、公共安全、庫存盤點、人員監護與救生等重要領域。利用超寬帶脈沖信號低截獲概率、保密性高和體積小的優點,該系統還可以應用與偵察、情報收集、傷員救護、武器制導等軍事領域[8]。

超寬帶信號具有很低的輻射功率,而這樣的輻射功率分布在某些方面GHz的頻率范圍內,功率譜密度極低,類似白噪聲頻譜,具有低干擾、低截獲概率特性;同時由于使用窄脈沖為信號載體并采用跳時擴頻,接收端必須已知發射端擴頻碼的條件下才能解調出發射數據來,加上它對多徑干擾具有很好的魯棒特性,非常適合在軍事保密通信的應用。非常低的輻射功率可以避免過量的電磁波對人體的傷害[7]。

結論

超寬帶無線通信技術是目前發展的熱門技術。它以其自身的優點,被研究人員廣泛關注。超寬帶無線電技術大體包括基帶脈沖傳輸方式和帶通載波調制傳輸的方式兩大類。脈沖傳輸的特點是把信息調制在離散脈沖信號上發射,而帶通載波調制傳輸的特點則是把信息調制在正弦載波上發射。本論文是以采用基帶脈沖傳輸技術的經典超寬帶無線電通信系統為基礎進行研究的。

為了更好地了解超寬帶通信系統,本文先概括地介紹了超寬帶無線通信的基礎知識。接著將仿真的基本工具MATLAB的使用說明簡單介紹。然后,重點介紹超寬帶通信的調制方式,主要包括對TH-PPM、DS-PAM和OFDM調制方式的介紹,并通過仿真圖像加以對比,說明調制方式的優缺點。

常采用不同的調制方案,對系統傳輸速率、搞多徑干擾能力有很大影響。對它們進行分析比較,對系統調制信號的設計具有一定的參考意義。通常,在一個通信系統中,應用何種調制方式不僅要看調制方式本身性能,還要根據系統總的設計加以考慮。

參考文獻

[1]葛利嘉,朱林,袁曉芳,陳幫富,超寬帶無線電基礎,電子工業出版社,2005,1~110

[2]葛利嘉,曾凡鑫,劉郁林,岳光榮,超寬帶無線通信,國防工業出版社,2005,76~107

[3]常遠,UWB無線通信系統信號產生和調制技術的研究,哈爾濱工程大學優秀碩士論文,2006

[4]朱慧,蘇銳,超寬帶技術概述,信息技術,2006

[5]武海斌,超寬帶無線通信技術的研究,無線電工程,2003

[6]徐征,UWB超寬帶無線通信技術,中國電力教育2006年研究綜述與論壇專刊,2006

[7]張新躍,沈樹群,UWB超寬帶無線通信技術及其發展前景,數據通信,2004

[8]張在琛,畢光國,超寬帶無線通信技術及其應用,技術視點,2004

[9]牛?模?禾危??澩?尷咄ㄐ畔低車牡髦品絞窖芯浚?繾又柿浚?004

[10]邵懷宗,李玉柏,彭啟琮,馬永,時間脈沖位置調制的超寬帶無線通信,系統工程與電子技術,2003

[11] Jeffrey H.Miller,”Why UWB? A Review of Ultrawideband Technology”, NETEX

第3篇

超寬帶(UWB,Ultra Wide Band)無線技術在無線電通信、雷達、跟蹤、精確定位、成像、武器控制等眾多領域具有廣闊的應用前景,因此被認為是未來幾年電信熱門技術之一。1990年,美國國防部首先定義了“超寬帶”概念,超寬帶無線通信開始得到美國軍方和政府部門的重視。2002年4月,美國FCC通過了超寬帶技術的商用許可,超寬帶無線通信在民用領域開始受到普遍關注。目前“超寬帶”的定義只是針對信號頻譜的相對帶寬(或絕對帶寬)而言,沒有界定的時域波形特征。因此,有多種方式產生超寬帶信號。其中,最典型的方法是利用納秒級的窄脈沖(又稱為沖激脈沖)的頻譜特性來實現[1]。

超寬帶無線電是對基于正弦載波的常規無線電的一次突破。幾十年來,無線通信都是以正弦載波為信息載體,而超寬帶無線通信則以納秒級的窄脈沖作為信息載體。其信號產生、調制解調、信號隱蔽性、系統處理增益等方面,具有獨特的優勢,尤其是能夠在密集的多徑環境下實現高速傳輸。由于脈沖持續時間很短,多徑分量在時域上不易重疊,多徑分辨能力高,通過先進的多徑分離技術或瑞克接收機,可以充分利用多徑分量。

目前,典型的超寬帶無線通信調制方式以TH-PPM、TH-PAM為主,本論文中,介紹超寬帶無線通信中的調制技術,主要討論TH-PPM、TH-PAM的基本原理,并且對比調制技術的優缺點,性能的好壞,并進行動態的仿真,從仿真圖中較清楚的研究調制方式,從而得出正確的結論,細致的研究超寬帶無線通信中的調制技術。

關鍵字:超寬帶 調制方式 PPM調制 PAM調制 OFDM調制

2 概述

2.1 總述

近幾年來,超寬帶短距離無線通信引起了全球通信技術領域極大的重視。超寬帶通信技術以其傳輸速率高、抗多徑干擾能力強等優點成為短距離無線通信極具競爭力和發展前景的技術之一。FCC(美國通信委員會) 對超寬帶系統的最新定義是:相對帶寬(在- 10dB 點處) (fH - fL)/fc > 20 %(fH ,fL ,fc分別為帶寬的高端頻率、低端頻率和中心頻率) 或者總帶寬BW> 500MHz。[1]它與現有的無線電系統比較,在花費更小的制造成本的條件下,能夠做到更高的數據傳輸速率(100~500MbPs) 、更強的抗干擾能力(處理增益50dB 以上) ,同時具有極好的抗多徑性能和十分精確的定位能力(精度在cm 以內) 。

2.2 UWB基本原理

發射超寬帶(UWB) 信號最常用和最傳統的方法是發射一種時域上很短(占空比低達0. 5 %) 的沖激脈沖。這種傳輸技術稱為“沖擊無線電( IR) ”.UWB - IR 又被稱為基帶無載波無線電,因為它不像傳統通信系統中使用正弦波把信號調制到更高的載頻上,而是用基帶信號直接驅動天線輸出的[6];由信息數據對脈沖進行調制,同時,為了形成所產生信號的頻譜而用偽隨即序列對數據符號進行編碼。因此沖擊脈沖和調制技術就是超寬帶的兩大關鍵所在。

2.2.1 脈沖信號

從本質上講,產生脈沖寬度為納秒級的信號源是UWB 技術的前提條件。目前產生脈沖信號源的方法有兩類: ①光電方法,基本原理是利用光導開關導通瞬間的陡峭上升沿獲得脈沖信號。由于作為激發源的激光脈沖信號可以有很陡的前沿,所以得到的脈沖寬度可達到皮秒(10 - 12 ) 量級。另外,由于光導開關是采用集成方法制成的,可以獲得很好的一致性,因此是最有發展前景的一種方法。②電子方法,利用微波雙極性晶體管雪崩特性,在雪崩導通瞬間,電流呈“雪崩”式迅速增長,從而獲得具有陡峭前沿的波形,成形后得到極短脈沖。在電路設計中,采用多個晶體管串行級聯,使用并行同步觸發的方式,加快了雪崩過程,從而達到進一步降低脈沖寬度的目的[7]。

沖激脈沖通常采用單周期高斯脈沖,典型的單周期高斯脈沖的時域和頻域數學模型分別表示為:

(2-1)

(2-2)

單周期脈沖的寬度在納秒級(0. 1~1. 5ns) ,重復周期為25~1000ns ,具有很寬的頻譜,如圖2-1 所示。實際通信中使用的是一長串的脈沖,由于時域中信號的周期性造成了頻譜的離散化,周期性的單脈沖序列頻譜中出現了強烈的能量尖峰。這些尖峰將會對信號構成干擾,通過數據信息和偽隨機碼來進行編碼P調制,改變脈沖與脈沖間的時間間隔,可以降低頻譜的尖峰幅度[2]。

圖2-1  單周期脈沖的時間域和頻率域的表示

2.2.2 UWB的調制技術

超寬帶系統中信息數據對脈沖的調制方法可以有多種。脈沖位置調制( PPM) 和脈沖幅度調制(PAM) 是UWB 最常用的兩種調制方式。通常UWB信號模型為:

(2-3)

其中,w ( t) 表示發送的單周期脈沖, dj , tj 分別表示單脈沖的幅度和時延。

a PAM- UWB

PAM是一種通過改變那些基于需傳輸數據的傳輸脈沖幅度的調制技術。在PAM調制系統中,一系列的脈沖幅度被用來代表需要傳輸的數據。任何形狀的脈沖都是通過其幅度調制使傳輸數據在{ - 1 , + 1}之間變化(對于雙極性信號) 或在M 個值之間變化(對于M 元PAM) 。增加傳輸脈沖所占的帶寬或減少脈沖重復頻率,都可以增加一個固定平均功率譜密度的UWB 系統所能達到的吞吐量和傳輸距離,可以看出這一效果與增加傳輸功率的峰值的效果是相似的。[8]

采用脈沖幅度調制(PAM)的超寬帶信號波形如下:[4]

(2-4)

其中, dj 是信息序列, Tf 是脈沖重復周期。根據dj 的不同取值, 可將PAM調制方式分為以下三種:

(1) OOK(發送數據為1 ,UWB 信號的幅度為1 ;發送數據為0 ,UWB 信號的幅度為0) ;

(2)PPAM(發送數據為1 ,UWB 信號的幅度為β1 ;發送數據為0 ,UWB 信號的幅度為β2) ;

(3)BPSK(發送數據為1 ,UWB 信號的幅度為1 ;發送數據為0 ,UWB 信號的幅度為- 1) 。

對于這三種方式,在超寬帶的PAM調制方式中多采用BPSK方式。

b PPM- UWB

脈沖位置調制(PPM) 又稱時間調制(TM) ,是用每個脈沖出現的位置落后或超前某一標準或特定時刻來表示某個特定信息的[3]。二進制PPM 是超寬帶無線通信系統經常使用的一種調制方法,相對其它調制方法來說也是較早使用的一種方法。采用PPM的一個重要原因是它能夠使用零相差的相關接收機來接收檢測信號,而這種接收機有著非常好的性能。采用脈沖位置調制( PPM) 的超寬帶信號波形如下:

(2-5)

其中, dj 取0 或1 ,δ為調制因子, 與脈沖寬度Tm (1/Tf ) 是一個數量級。當發送數據為1 時脈沖就會相應滯后一個時延δ。

圖2-2 給出了上述四種調制方法的信號波形圖,對這四種調制方式給出了一個比較直觀的描述。

除了這些對脈沖的調制方法外,用偽隨機碼或偽隨機噪聲(PN) 對數據符號進行編碼以得到所產生信號的頻譜時,根據編碼的不同即擴頻和多址技術不同,超寬帶系統又被分為跳時的超寬帶系統(TH - UWB) 、直擴的超寬帶系統(DS - UWB) 、跳頻的超寬帶系統(FH - UWB) 和基帶多載波超寬帶系統(MC - UWB) 等[9]。

圖2-2  不同調制方式的信號波形[4]

2.3 UWB 技術特點

由于UWB 與傳統通信系統相比,工作原理迥異,因此UWB 具有如下傳統通信系統無法比擬的技術特點[4]:

(1)系統容量大。香農公式給出C = Blog2 (1 +S/N) 可以看出,帶寬增加使信道容量的升高遠遠大于信號功率上升所帶來的效應,這一點也正是提出超寬帶技術的理論機理。超寬帶無線電系統用戶數量大大高于3G系統。

(2)高速的數據傳輸。UWB 系統使用上GHz 的超寬頻帶,根據香農信道容量公式,即使把發送信號功率密度控制得很低,也可以實現高的信息速率。一般情況下,其最大數據傳輸速度可以達到幾百Mbps~1Gbps。

(3)多徑分辨能力強。UWB 由于其極高的工作頻率和極低的占空比而具有很高的分辨率,窄脈沖的多徑信號在時間上不易重疊,很容易分離出多徑分量,所以能充分利用發射信號的能量。實驗表明,對常規無線電信號多徑衰落深達10~30dB 的多徑環境,UWB 信號的衰落最多不到5dB。

(4)隱蔽性好。因為UWB 的頻譜非常寬,能量密度非常低,因此信息傳輸安全性高。另一方面,由于能量密度低,UWB 設備對于其他設備的干擾就非常低。

(5)定位精確。沖激脈沖具有很高的定位精度,采用超寬帶無線電通信,可在室內和地下進行精確定位,而GPS 定位系統只能工作在GPS 定位衛星的可視范圍之內。與GPS 提供絕對地理位置不同,超短脈沖定位器可以給出相對位置, 其定位精度可達厘米級。

(6)抗干擾能力強。UWB 擴頻處理增益主要取決于脈沖的占空比和發送每個比特所用的脈沖數。UWB 的占空比一般為0. 01~0. 001 ,具有比其它擴頻系統高得多的處理增益,抗干擾能力強。一般來說,UWB 抗干擾處理增益在50dB 以上。

(7)低成本和低功耗。UWB 無線通信系統接收機沒有本振、功放、鎖相環( PLL) 、壓控振蕩器(VCO) 、混頻器等, 因而結構簡單,設備成本將很低。由于UWB 信號無需載波,而是使用間歇的脈沖來發送數據,脈沖持續時間很短,一般在0. 20ns~1. 5ns之間,有很低的占空因數,所以它只需要很低的電源功率。一般UWB 系統只需要50~70mW 的電源,是藍牙技術的十分之一[10]。盡管如此,UWB 在技術上面臨一定的挑戰, 還有諸多技術的問題有待研究解決,比如需要更好地理解UWB 傳播信道的特點,建立信道模型,解決多徑傳播;需要進一步研究高速脈沖信號的生成、處理等技術;研究新的調制技術,進一步降低收發結構的復雜度等。

轉貼于

2.4 UWB發射機和接收機組成框圖

2.4.1 UWB發射機組成框圖

UWB發射機直接發送納秒級脈沖來傳輸數據而不需使用載波電路。所以,UWB發射機比現有的無線發射設備要簡單得多。TH-UWB發射機組成框圖如圖2-3所示[5]。

圖2-3 UWB發射機組成框圖

調制后的數據與偽碼產生器生成的偽碼一起送入可編程延遲電路,可編程延遲電路產生的時延控制脈沖信號發生器的發送時刻,脈沖信號發生器輸出的UWB信號由天線輻射出去。脈沖信號產生電路的一個關鍵部分是天線,它的作用相當于一個濾波器。

2.4.2 UWB接收機組成框圖

TH-UWB接收機采用相關接收方式,接收機框圖如圖4所示。圖4中虛線內的部分是相關器。它由乘法器、積分器和取樣/保持電路三部分組成[5]。

接收機與發射機類似,兩者的區別在于接收機的基帶信號處理器從取樣/保持電路中解調數據,基帶信號處理器的輸出控制可編程時延電路,為可編程時延電路提供定時跟蹤信號,保證相關器正確解調出數據。

圖2-4 UWB接收機組成框圖

2.5 UWB 技術的應用前景

UWB 系統在很低的功率譜密度的情況下,UWB具有巨大的數據傳輸速率優勢,最大可以提供高達1000Mbps 以上的傳輸速率,使UWB 同其它短距離無線通信系統的技術優勢非常明顯,如表1 所示。現有的各種無線解決方案(例如802. 11 ,Bluetooth等) 的速率均低于100Mbit/s ,UWB 則在10m 左右的范圍之內打破了這一限制,UWB 的應用將使人們可以擺脫更多線纜的牽絆,通信因而變得更為方便[6]。

2.6 結束語

無線通信已經迅速滲入我們的生活當中,對容量不斷增長的要求需要一種不對現有的通信系統造成影響的新的無線通信方案,超寬帶脈沖無線電系統正好滿足了這一要求。UWB 技術對于無線短距離的高速數據通信是非常有競爭力的,隨著研究的深入,憑借多方面的優勢,它將在很多領域占有一席之地。特別是短距離傳輸的后3G領域,UWB 將有廣闊的發展空間[8]。

表1  幾種短距離無線通信比較

家庭和辦公室互連

筆記本、臺式電腦、掌上電腦、因特網網關

無線電視、DVD , 高速因特網網關

3 MATLAB 軟件工具介紹

3.1 MATLAB語言的概述

MATLAB是一種科學計算軟件,適用于工程應用各領域的分析設計與復雜計算,它使用方便,輸入簡捷,運算高效且內容豐富,很容易由用戶自行擴展。因此,它已成為大學教學和科學研究中最常用且必不可少的工具。

MATLAB是“矩陣實驗室”(MATrix LABoratoy)的縮寫,它是一種以矩陣運算為基礎的交互式程序語言,著重針對科學計算、工程計算和繪圖的需求。與其他計算機語言相比,其特點是簡潔和智能化,適應科技專業人員的思維方式和書寫習慣,使得編程和調試效率大大提高。它用解釋方式工作,鍵入程序立即得出結果,人機交互性能好,為科技人員所樂于接受。特別是它可適應多種平臺,并且隨計算機硬、軟件的更新而用時升級。因而,MATLAB語言是數值計算用得最頻繁的電子信息類學科工具。它大大提高了課程教學、解題作業、分析研究的效率。

3.2 MATLAB的歷史

在1980年前后,美國的Cleve Moler博士在New Mexico大學講授線性代數課程時,發現應用其他高級語言編程極為不便,便構思并開發了MATLAB(MATrix LABoratory,矩陣實驗室),它是集命令翻譯、科學計算于一身的一套交互式軟件系統,經過在該大學進行了幾次的試用之后,于1984年推出了該軟件的正式版本。它是以著名的線性代數軟件包LINPACK和特征計算軟件包EISPACK中的子程序為基礎發展而成的一種開放型程序設計語言,其基本的數據單元是一個維數不加限制的矩陣,這就允許用戶可以根據數值計算問題的復雜程序,對問題進行分段甚至逐句編程處理,顯然這與C、FORTRAN等傳統高級語言完全不同。在MATLAB下,矩陣的運算變得異常的容易,后來的版本中又增添了豐富多彩的圖形圖像處理及多媒體功能,使得MATLAB的應用范圍越來越廣泛,Moler博士等一批數學家與軟件專家組建了名為MathWorks的軟件開發公司,專門擴展并改進MATLAB。

為了準確地把一個控制系統的復雜模型輸入給計算機,然后對之進行進一步的分析與仿真,1990年MathWorks軟件公司為MATLAB提供了新的控制系統模型圖形輸入與仿真工具,并定名為SIMULAB,該工具很快在控制界得致函廣泛的使用。但因其名字與著名的軟件SIMULA類似,所以在1992年正式改名為SIMULINK。此軟件有兩個明顯的功能:仿真與連接,亦即可以利用鼠標在模型窗口上畫出所需的控制系統模型,然后利用該軟件提供的功能來對系統直接進行仿真。很明顯,這種做法使得一個很復雜系統的輸入變得相當容易。SIMULINK的出現,更使得MATLAB的控制系統的仿真與其在CAD中的應用打開了嶄新的局面。

3.3 MATLAB語言的特點

MATLAB語言有以下特點。

(1) 起點高

每個變量代表一個矩陣,以矩陣運算見長。當前的科學計算中,幾乎無處不用矩陣運算,這使它的優勢得到了充分的體現。

(2) 人機界面適合科技人員

MATLAB的語言規則與筆算式相似。MATLAB的程序與科技人員的書寫習慣相近,因此,易寫易讀,易于在科技人員之間交流。矩陣的行列數無需定義。MATLAB不必有階數定義,輸入數據的行列數就決定了它的階數。鍵入算式立即得到結果,無需編譯。MATLAB是以解釋方式工作的,即它對每條語句解釋后立即執行,若有錯誤也立即做出反應,便于編程者立即改正。這些都大大減輕了編程和調試的工作量。

(3) 強大而簡易的做圖功能

能根據輸入數據自動確定坐標繪圖,能規定多種坐標系,(極坐標系、對數坐標系等),能繪制三維坐標中的曲線和曲面,可設置不同顏色、線型、視角等。如果數據齊全,通常只需一條命令即可出圖。

(4) 智能化程度高

繪圖時自動選擇坐標,大大方便了用戶;做數值積分時自動按精度選擇步長;自動檢測和顯示程序錯誤的能力強,易于調試。

(5) 功能豐富,可擴展性強

MATLAB軟件包括基本部分和專業擴展兩大部分。

基本部分包括矩陣的運算和各種變換、代數和超越方程的求解、數據處理和傅立葉變換及數值積分等等。可以充分滿足大學理工科學生的計算需要。

擴展部分稱為工具箱。它實際上是用MATLAB的基本語句編成的各種子程序集,用于解決某一方面的專門問題,或實現某一類的新算法。現在已經有控制系統、信號處理、圖像處理、系統辨識、模糊集合、神經元網絡及小波分析等工具箱,并且向公式推導、系統仿真和實時運行等領域發展。

MATLAB的核心內容在于它的基本部分,所有的工具箱子程序都是用它的基本語句編寫的。

3.4 MATLAB仿真

通過利用所學的理論知識,建立一個完整、準確的需求說明,清楚、準確地提出仿真試驗所要解決的問題。

對所提出的仿真系統給出詳細定義,明確系統中的模塊、系統構成、模塊之間的相互關系,系統的輸入輸出、邊界條件以及系統的約束條件,并明確仿真所要達到的目標。

根據仿真系統分析的結果,確定系統中的參數、變量及其互之間的關系,并以數學形式將這些關系描述出來,從而構成仿真系統的數學模型。數學建模是系統仿真中最關鍵的一步,所建立的數學模型必須盡可能準確地反映所關心的真實系統的特性,而又不能過于復雜,以免降低模型的效率,增加不必要的計算過程,即建模需要根據求解問題的要求,在模型的近似程度與復雜程度之間折中。電子與通信系統的數學模型通常以方框圖形式或數學方程形式來表達。

根據建立的數學模型所需要的數據元素,收集與模型系統有關的數據。根據數學模型建立系統的計算機仿真模型,收集數據,確定其中各子模塊的結構,輸入輸出接口,輸入輸出的數據表達形式,數據的存儲方式等。然后編制相應的程序流程,用MATLAB語言實現。

仿真模型驗證的目的是確定計算機仿真模型是否準確表達了數學模型。仿真模型驗證通常的方法是將數學模型的解析結果(或理論結果)與仿真所得到的數值結果相比較來完成的;或通過已知的系統輸入輸出結果,對比在相同條件下的系統仿真結果來驗證仿真模型的正確性。

第4篇

發射超寬帶(UWB)信號最常用和最傳統的方法是發射時域上很短的脈沖。這種傳輸技術稱為“沖激無線電”(Impulse Radio,簡寫為IR)。信息數據符號對脈沖進行調制,其調制方式可以有多種。脈沖位置調制(PPM)和脈沖幅度調制(PAM)是最常用的兩種調制方式。除了要對脈沖進行調制外,為了形成所產生的信號的頻譜,還要用偽隨機碼或偽隨機噪聲(PN)對數據符號進行編碼。一般是,編碼后的數據符號引起脈沖在時間軸上的偏移,這就是所謂的跳時超寬帶(TH-UWB,Time-Hopping UWB)。直接序列擴譜(DS-SS)就是編碼后的數據符號對基本脈沖的幅度進行調制,這在沖激無線電(IR)中被稱為直接序列超寬帶(DS-UWB,Direct-Sequence UWB),這種調制方式似乎非常有吸引力[1]。

對于超寬帶信號,也可以通過很高的數據速率來產生而根本不需要具備脈沖的特性。只要UWB定義所要求的相對帶寬或最小帶寬在整個傳輸過程中得到滿足,那么,靠發射高速率數據而不是窄脈沖所產生的具有UWB射頻帶寬的系統,就不應該被排除在UWB系統之外。諸如正交頻分復用(OFDM),在數據速率適當的情況下也可產生UWB信號。因此,OFDM也是一種超寬帶的調制方式。

本文主要討論TH-UWB、DS-UWB和OFDM調制方式。

4.1 PPM-TH-UWB 調制方式

4.1.1 跳時超寬帶信號的產生

在結合了二進制PPM的TH-UWB(二進制PPM-TH-UWB或者PPM-TH-UWB)中,UWB信號的產生可以系統地描述如下(參見圖4-1描繪的發射鏈路) [1]。

SHAPE \* MERGEFORMAT

圖4-1 PPM-TH-UWB信號的發射方案

給定待發射的二進制序列b=(…,b0,b1,…,bk,bk+1,…),其速率Rb=1/Tb (b/s),圖4-1中的第一個模塊使每個比特重復Ns次,產生一個二進制序列:

(…,b0,b0,…,b0,b1,b1,…,b1,…,bk,bk,…,bk,bk+1,bk+1,…,bk+1,…)=

(...,a0,a1,…aj,aj+1,…)=a

新的比特速率Rcb=Ns/Tb=1/Ts (b/s)。這個模塊引入了冗余,其實是一種被稱為重復碼的(Ns,1)分組編碼器。一般術語上稱為信道編碼。

第二個模塊是傳輸編碼器,就是應用整數值碼序列c=(…,c0,c1,…,cj,cj+1,…)和二進制序列a=(…,a0,a1,…,aj,aj+1,…),產生一個新序列d,序列d的一般元素表達式如下:

dj=cjTc+aj

(4-1)

式中,Tc和 是常量,對所有的cj滿足條件cjTc+

這里的d是一個實數值序列,而a是二進制序列,c是整數值序列.現在我們遵循最常用的方法,假定c是企業界隨機碼序列,它的元素cj是整數,且滿足

0 cj Nh-1。 碼序列c可能為周期序列,其周期表示為Np。兩種特殊情況值得討論。第一種,碼是非周期的,即 ;第二種是Np=Ns,這是最常用的一種,這時的編碼周期與二進制碼重復的次數相等。我們必須牢記:傳輸編碼扮演了碼分多址編碼和發射信號的頻譜形成雙重角色[1]。

實數值序列d輸入到第三個模塊,即PPM調制模塊,產生了一個速率為Rp=Ns/Tb=1/Ts(脈沖/s)的單位脈沖(Dirac pulses ) 序列。這些脈沖在時間軸上的位置為 ,因此脈沖位置在jTs基礎上偏移了dj,脈沖的發生時間也可表示為( )。注意是碼序列對c信號引入了TH位移,也正因為此,c被稱為TH碼。還要注意一點就是由PPM調制引起的位移 ,通常比TH碼引起的位移cjTc小得多,即: ,cj=0除外。Tc稱為碼片時間(chip time)。

最后一個模塊是脈沖形成濾波器,其沖激響應為。必須保證脈沖形成濾波器輸出的脈沖序列不能有任何的重疊。

以上所有系統級聯以后的輸出信號 可表示如下:

(4-2)

比特間隔或比特持續時間,也即用于傳輸一個比特的時間Tb,可表示為:Tb=NsTs。在式(4-2)中,cjTc定義了脈沖的隨機性或者說是相對于Ts整數倍時刻的抖動。如果用隨機TH抖動 來表示由TH編碼cjTc引起的時間上的位移,并假定 在0和 之間分布,則可得到:

(4-3)

正如前面提到的, 通常遠大于 。這兩個量的整體效果是產生一個分布在0和 之間的時間隨機位移量,用 表示這個時間隨機位移,可得發射信號的如下表達式:

(4-4)

更一般性地概括式(4-2)所表示的信號,其思想是:對于信息比特“0”和“1”,可以發射兩個不同的脈沖波形 和 來分別表示。上面分析的PPM調制的例子,引入了 這個時間位移量,它的值根據它所代表的比特而有所不同,其實是上述思想的特殊例子,其中的 是 位移以后的波形。一種更一般的表達式:

(4-5)

當將 設置為- 時,式(4-5)也表示了PAM和TH-UWB的結合,即PAM-TH-UWB模型[1]。

4.1.2 PPM-TH-UWB的發射鏈路

系統模型如圖4-2所示

SHAPE \* MERGEFORMAT

圖4-2 PPM-TH-UWB 發射器的系統模型

圖4-2中的第一個模塊表示二進制源。這個模塊的輸出是發射到物理信道的二進制流。第二個模塊表示重復碼編碼器。二進制流的每一個比特都被重復次。第三個模塊仿真TH編碼和二進PPM。這里考慮偽隨機TH碼。最后一個模塊是脈沖形成。這個模塊的沖激響應表示要發射的UWB信號的基本脈沖波形[1]。

4.1.3 PPM-TH-UWB 仿真結果及其分析

圖(4-3)顯示了參數設置如下時所產生的UWB信號

以dBm為單位的平均發射功率Pow,

信號的抽樣頻率fc,

由二進制源產生的比特數numbits, 平均脈沖重復時間Ts(單位為秒),每個比特映射的脈沖數Ns,

碼片時間Tc(秒),

跳時碼的碼元最大值Nh和周期Np,沖激響應持續時間Tm,

脈沖波形形成因子tau(秒),

PPM時移dPPM(秒)。

Stx: Pow=-30,

fc=50e9, numbits =2,

Ts=3e-9,

Ns=5,

Tc=1e-9,

Nh=3,

Np=5,

Tm=0.5e-9, tau=0.25e-9,

dPPM=0.5e-9

由圖4-3中可以看到輸出序列的前五個脈沖在其對應時隙的中間位置,而后五個脈沖則在其對應時隙的起始位置。

圖4-3 PPM-TH-UWB 發射機產生的信號

圖4-4 PPM-TH-UWB的幅度譜

由圖4-4可以看出,TH編碼和PPM調制都對幅度譜的高斯形狀產生扭曲。PPM-TH-UWB信號的幅度譜將完全包含在無TH編碼和無PPM調制的幅度譜包絡中,這是因為以同樣的形狀和同樣的平均功率傳輸等間隔脈沖的結果。

4.2 PAM-DS-UWB調制方式

4.2.1 直接序列超寬帶信號的產生

直接序列擴譜(DS-SS)是一種著名的數字調制方式。這里,我們先回顧DS-SS的基本原理,并把主要精力放在它在UWB的延伸方面。

具有UWB特性的信號可以通過下面的過程產生:首先,用偽隨機碼或二進制PN碼序列對要發射的二進制進行編碼;其次,對一串窄脈沖進行幅度調制。這一過程可以看做是目前使用DS-SS系統的一種極端方式,此時脈沖在時域上是具有典型時間的奈奎斯特型脈沖或方波。讓脈沖寬度遠遠小于切普間隔,很容易得到DS-SS-UWB的解析表達式。在傳統的DS-SS系統中,RF發射信號是對載波進行幅度調制后得到的,通常使用二進制相移鍵控BPSK方式。而在DS-UWB中,如果沒有專門的要求,這一過程可省略。[1]

更詳細地,上述信號可以通過如下過程產生(見圖所示發射鏈路)。

SHAPE \* MERGEFORMAT

圖4-5 PAM-DS-UWB 信號的發射方案

假定待發射的二進制序列b=(…,b0,b1,…,bk,bk+1,…),其速率為Rb=1/Tb (b/s),圖4-5中的第一個系統將每個比特重復Ns次,得到序列:(…,b0,b0,…,b0,b1,b1,…,b1,…,bk,bk,…,bk,bk+1,bk+1,…,bk+1,…)=a*,其速率為Rcb=Ns/Tb=1/Ts (b/s)。與TH方式相似,系統引入的冗余相當于一個參數為(Ns,1)的重復碼編碼器。

第二個系統將a*序列轉換成只含有正值和負值元素的序列a=(…,a0,…,a1,…,aj,aj+1,…),轉換公式為:( ).

發射編碼器將一個由 1組成、周期為Np的二進制碼序列c=(…,c0,c1,…,cj,cj+1,…)應用到序列a=(…,a0,…,a1,…,aj,aj+1,…),產生一個新序列d=a·c,其組成元素dj=ajcj。通常假定Np等于Ns,更具一般性的假定是Np等于Ns的整數倍。注意,序列d的元素值為 1,這一點與序列a相同,其速率為Rc=Ns/Tb=1/Ts (b/s)。

序列d進入第三個系統——PAM調制器,產生一個速率為Rp=Ns/Tb=1/Ts

(脈沖/s)的單位脈沖(Dirac脈沖 )序列,其位置在jTs處[6]。

調制器輸出的信號進入沖洲響應為p(t)的脈沖形成濾波器。在傳統的DS-SS系統中,沖激響應p(t)是持續時間為Ts的矩形脈沖。而在DS-UWB系統中,與TH方式相似,p(t)是持續時間遠小于Ts的脈沖。

以上系統級聯后的輸出信號可以表示為

(4-6)

注意,與TH方式相似,比特間隔或比特持續時間,即傳輸一個比特所用的時間是Tb=NsTs。

輸出的波形顯然是一個PAM波形。很容易知道,由于沒有時移而且脈沖以規則的時間間隔出現,計算式(4-6)所示信號的PSD要比計算式(4-2)所示信號的PSD更容易。

上述方式的一種變形是使用PPM調制器代替PAM調制器,得到的信號可表示為:

(4-7)

注意到在式(4-7)中,由于碼的偽隨機特性,編碼會起到白化頻譜的作用。

4.2.2 PAM-DS-UWB 發射鏈路

其系統模型如圖4-6所示.

SHAPE \* MERGEFORMAT

圖4-6 PAM-DS-UWB 發射機系統模型

圖4-6中的前兩個模塊分別表示二進制源和重復碼編碼器。第三個模塊是在重復碼編碼器的輸出端實現DS編碼和二進制PAM調制。我們考慮偽隨機DS碼,分配給一般用戶的是長度為NP的二進制碼序列。最后一個模塊是脈沖形成器[1]。 4.2.3 PAM-DS-UWB 仿真結果及其分析

圖4- 7 由PAM-DS-UWB發射機產生的信號

圖(4-7)顯示了參數設置如下時所產生的UWB信號

以dBm為單位的平均發射功率Pow,

信號的抽樣頻率fc,

由二進制源產生的比特數numbits, 平均脈沖重復時間Ts(單位為秒),每個比特映射的脈沖數Ns,

碼片時間Tc(秒),

跳時碼的碼元最大值Nh和周期Np,沖激響應持續時間Tm,

脈沖波形形成因子tau(秒),

PPM時移dPPM(秒)。

Stx: Pow=-30,

fc=50e9, numbits =2,

Ts=2e-9,

Ns=10,

Np=10,

Tm=0.5e-9,

tau=0.25e-9,

這個信號由兩組脈沖序列組成,每組包含10個脈沖,每組映射信息源的一個比特。從圖4-7中可以看出每二組的10個脈沖與第一組的10個脈沖在極性上是相反的。

圖4-8 PAM-DS-UWB的幅度譜

由圖4-8可以看出,幅度譜的包絡具有基本脈沖的傅氏變換的形狀,即高斯形狀。且Np(信號每比特發射脈沖數)值越大,圖形分布越寬,即幅度峰值越小。

4.3 OFDM調制技術

4.3.1 概述

多頻帶(MB)方式與本章前兩節分析研究的IR原理不同。根據2002年,FCC公布的UWB定義,帶寬超過500MHz的信號都是UWB信號。因此,按照FCC規定的頻帶范圍3.1~10.6GHz,將此7.5 GHz的帶寬分割成最小帶寬為500MHz的若干個頻帶。為了盡量減小同窄帶通信系統的相互干擾,UWB采用較小的功率,于是UWB信號對于窄帶通信系統來說相當于熱噪聲,并不被窄帶通信系統的接收機檢測到,也可以避免特定頻帶上的非人為干擾[1]。

在每個子頻帶內可以使用不同的數據調制類型,并不一定要用IR方式,正確的頻譜帶寬可以通過合適的比特速率實現。應用最廣泛的是眾所周知的正交頻分復用(OFDM)。

4.3.2 多頻段OFDM-UWB信號產生

一個已調的OFDM信號由調制在不同載波頻率 上的同個并行發射的信號組成。這些載波等間隔地位于頻域上,其間隔為 。OFDM調制器輸入的二進制序列每K比特編為一組,以產生具有N個符號的數據塊{ },這里假定 是L個可能的取值中的一個,K=N1bL。最后,每個符號調制一個不同的載波。為了并行傳輸數據塊的N個符號,不同的調制載波信號在頻率上必須正交[8]。

所有調制器使用相同的矩形波,其持續時間為T:

(4-8)

如果符號 在星座圖中的點用 表示,OFDM信號中有N個符號的數據塊的表達式如下[1]:

(4-9)

而相應的復包絡是

(4-10)

其中 ,S(t)是周期為T0的周期函數。

式(4-9)中OFDM信號的數字變換相當于傳輸式(4-10)中復數包絡的抽樣值,也就是說傳輸序列可表示如下:

(4-11)

tc是抽樣周期。

仿真OFDM調制信號,考慮的是OFDM各個載波使用QPSK調制的情況。仿真整個發射鏈路,產生式(4-9)的信號。

4.3.3 OFDM仿真結果及其分析

要發射的總比特數numbits;

調制信號的中心頻率fp;

抽樣頻率fc; 每個符號在其相應載波上的傳輸時間T0;

循環前綴的持續時間TP;保護間隔時間TG, 矩形脈沖響應的幅度為A, OFDM系統的子載波數N。

(1) numbits=8; fp=1e9;

fc=50e9;

T0=242.4e-9;

TP=60.6e-9;

TG=70.1e-9;

A=1;

N=4;

圖4-9 OFDM-UWB信號

圖4-10 OFDM-UWB幅度譜

圖4-10中的幅度譜由子載波的幅度譜疊加而成。

(2)numbits=8; fp=1e9;

fc=50e9;

T0=242.4e-9;

TP=0;

TG=50e-9;

A=1;

N=2;

圖4-11 OFDM-UWB信號圖

圖4-11 OFDM-UWB信號幅度譜

對比以上兩圖,可以看出,在同樣的時間里為了傳輸更多的符號,是以增加帶寬為代價的,也就是增加子載波的數量。

4.4 總結

通過一系列的仿真,我們可以得出以下結論:PAM、PPM兩種調制方法主要是為了進行信息數據符號對脈沖的調制,而信號中的偽隨機TH碼和DS碼主要是為了產生信號的頻譜,使信號的功率譜密度在采用偽隨機碼調制后變得更加平滑,不能干擾到其它已經存在的窄帶系統[9]。

OFDM具有良好的抗多徑干擾性能,通過頻率的合理選擇,能夠同現存的窄帶系統和開放頻段的通信系統具有很好的共存性,同傳統的超寬帶系統相比有很大的優勢[11]。

5 性能分析及應用前景

5.1 脈位調制(PPM)和脈幅調制(PAM)

脈位調制(PPM)是一種利用脈沖位置承載數據信息的調制方式。按照采用的離散數據符號的狀態數可以分為二進制PPM(2PPM)和多進制(MPPM)。在這種調制方式中,一個脈沖重復周期內脈沖可能出現的位置有2個或M個,脈沖位置與符號狀態一一對應。根據相鄰脈位之間距離與脈沖寬度之間關系,又可分為部分重疊的PPM和正交PPM(OPPM)。在部分重疊的PPM中,為保證系統傳輸可靠性,通常選擇相鄰脈位互為脈沖自相關函數的負峰值點,從而使相鄰符號的歐氏距離最大化。在OPPM中,通常以脈沖寬度為間隔確定脈沖位置。接收機利用相關器在相應位置進行相干檢測。鑒于UWB系統的復雜度和功率限制,實際應用中,常用的調制方式為2PPM或2OPPM[3]。

PPM的優點在于:它僅需要根據數據符號控制脈沖位置,不需要進行脈沖幅度和極性的控制,便于以較低的復雜度實現調制與解調。因此,PPM是UWB系統廣泛采用的調制方式。但是,由于PPM信號為單極性,其輻射譜中往往存在幅度較高的離散譜線。對此超寬帶信號的幅度譜仿真也證明了這一點。如果不對這些譜線進行抑制,將很難滿足FCC對輻射譜的要求[10]。

脈幅調制(PAM)是數據通信系統最為常用的調制方式之一。在UWB系統中,考慮到實現復雜度和功率有效性,不宜采用多進制PAM(MPAM)。UWB系統常用的PAM有兩種方式:開關鍵控(OOK)和二進制相移鍵控(BPSK)。前者可以采用非相干檢測降低接收機復雜度,而后者采用相干檢測可以更好地保證傳輸可靠性[3]。

當發射能量相同時,使用二進制PAM調制的信號可以比使用二進制PPM調制的信號獲得更好的性能。

5.2 OFDM調制

OFDM有很多優點:能夠提供較大的系統容量,具有較強的抗多徑干擾、抗頻率選擇性衰落和頻率擴散能力,適應多徑和移動信道傳播條件,能夠適應不同設計需求,靈活分配數據容量和功率,可提供靈活的高速和變速綜合數據傳輸可以實現較高的安全傳輸性能,允許數據在復數的高速的射頻上被編碼。由于OFDM技術的良好性能使得它在無線通信系統中得到了廣泛的應用[12]。

OFDM技術是將頻道資源分成若干個子信道,每個子信帶再采用一定的調制技術,提高頻率利用率。OFDM可與PPM、PAM等結合使用,將會有性能更好的調制技術出現。

5.3 UWB的應用前景

超寬帶技術在通信、雷達和無線定位等領域都將有廣闊的應用前景。近年來,人們對超寬帶技術深入的研究使超寬帶技術在系統理論、功率放大器、脈沖的產生與接收、同步、集成電路等方面取得了重大進步,尤其是在超寬帶無線產生領域的技術進步,使超寬帶通信成為無線網絡的重要組成部分成為可能。

相對于傳統的窄帶無線通信系統,超寬帶無線產生系統具有諸多優點和潛力,使超寬帶無線產生成為中短距無線網絡的理想接入技術。根據產生速率不同,擠兌超寬帶無線傳輸系統也具有不同的特點和應用領域。

利用超寬帶技術可以提供高數據率傳輸的能力與定位功能,可以設計依賴定位信息優化網絡資源管理的WPAN或WLAN,并應用于多媒體傳輸、計算機通信和家庭娛樂等領域。

利用脈沖超寬帶信號對障礙物的良好穿透特性與精確測距功能,可以設計既具有通信功能也具有定位功能的超寬帶脈沖無線通信與定位系統。該系統包括傳輸距離遠(通信速率低)、頒布式移動定位、便攜、超低成本、超低功耗、定位可靠性和精度高等特點。因而可以廣泛用于傳感器網絡、消防、公共安全、庫存盤點、人員監護與救生等重要領域。利用超寬帶脈沖信號低截獲概率、保密性高和體積小的優點,該系統還可以應用與偵察、情報收集、傷員救護、武器制導等軍事領域[8]。

超寬帶信號具有很低的輻射功率,而這樣的輻射功率分布在某些方面GHz的頻率范圍內,功率譜密度極低,類似白噪聲頻譜,具有低干擾、低截獲概率特性;同時由于使用窄脈沖為信號載體并采用跳時擴頻,接收端必須已知發射端擴頻碼的條件下才能解調出發射數據來,加上它對多徑干擾具有很好的魯棒特性,非常適合在軍事保密通信的應用。非常低的輻射功率可以避免過量的電磁波對人體的傷害[7]。

參考文獻

[1]葛利嘉,朱林,袁曉芳,陳幫富,超寬帶無線電基礎,電子工業出版社,2005,1~110

[2]葛利嘉,曾凡鑫,劉郁林,岳光榮,超寬帶無線通信,國防工業出版社,2005,76~107

[3]常遠,UWB無線通信系統信號產生和調制技術的研究,哈爾濱工程大學優秀碩士論文,2006

[4]朱慧,蘇銳,超寬帶技術概述,信息技術,2006

[5]武海斌,超寬帶無線通信技術的研究,無線電工程,2003

[6]徐征,UWB超寬帶無線通信技術,中國電力教育2006年研究綜述與論壇專刊,2006

[7]張新躍,沈樹群,UWB超寬帶無線通信技術及其發展前景,數據通信,2004

[8]張在琛,畢光國,超寬帶無線通信技術及其應用,技術視點,2004

[9]牛犇,梁濤,超寬帶無線通信系統的調制方式研究,電子質量,2004

[10]邵懷宗,李玉柏,彭啟琮,馬永,時間脈沖位置調制的超寬帶無線通信,系統工程與電子技術,2003

[11] Jeffrey H.Miller,”Why UWB? A Review of Ultrawideband Technology”, NETEX

第5篇

[關鍵詞]通信工程;培養模式;課程體系;實踐環節

0引言

大連海洋大學是我國北方地區唯一的一所以海洋和水產學科為特色,多學科協調發展的涉海高等院校,為振興遼寧老工業基地,適應遼寧省及全國沿海省市對海洋漁業通信工程發展的需要,發展區域經濟,滿足我國和全省經濟建設對海洋漁業通信工程專業人才的需求,大力發展信息產業建設,通信工程專業自2003年開始招生。在開辦的這十二年時間里,我們下大力氣,狠抓專業建設規范,注重教學質量。隨著本專業師資力量的逐步增強,我們對本專業的發展現狀、發展規律的深入研究把握,對專業定位的認識逐步統一,大連海洋大學通信工程專業的特色目標和人才培養目標逐步清晰明確。

1培養目標

大連海洋大學信息工程學院通信工程專業是從學校的學科專業結構特點和學科特色出發,合理配置學校的教學資源,在電子信息工程、通信工程、自動化、計算機科學與技術、船舶與海洋工程和航海技術的學科交叉基礎上設立的專業。學校以提升人才培養質量為核心,立足遼寧,面向黃、渤海,輻射全國,為區域經濟建設服務,為國家水產和海洋事業服務,致力于培養德、智、體、美全面發展,知識面寬,基礎扎實,綜合素質高,具有創新精神和實踐能力,敬業、專業、樂業、創業的復合性應用型人才的人才培養戰略。在人才培養過程中注重培養學生的自主性、研究性學習的能力和分析問題、解決問題的能力,結合地方經濟社會發展需要確定本專業的培養目標、任務和要求,加強海洋漁業通信方面的特色教育。在多年辦學經驗的基礎上,經多方調研,結合本校實際,制定并逐步完善了通信工程專業的培養目標:以培養德、智、體、美全面發展,熟練掌握通信技術、通信系統和通信網絡的基本理論、基本知識和基本技能與方法,并具備電子和計算機技術等方面知識,具有較強的工程實踐能力,能夠從事固定通信、移動通信及船舶通信等現代通信系統及設備的研究、設計、開發與應用的,具有海洋、漁業科學背景的人才。

2課程體系的改革和優化

課程體系主要包括課程設置、教學內容及課程結構,是教學思想、教育理念的具體化,也是實現創新能力培養與綜合素質提高的保證。課程設置是否科學,教學內容是否合理,直接影響創新能力的培養與綜合素質的提高。按照我校建設“藍色大學”理念,構建了通信工程專業藍色人才培養方案。培養方案堅持“加強通識教育、拓寬學科基礎、凝練專業方向、提升實踐能力、培養創新精神”的人才培養原則,優化人才培養過程,構建課內、課外一體化的培養模式,依照“淺藍、蔚藍、湛藍、深藍”的藍色課程體系,用藍色課程元素來承載水的精神與海的文化,延伸至涉海涉水教學內容要素。(1)淺藍(通識課程)包括公共基礎課(思想政治理論課、大學外語、大學計算機基礎、高等數學、大學物理、體育等),公共選修課(軍事理論、健康與安全教育、選修課),公共集中實踐環節(軍訓)。通識課程雖然不一定與通信專業有直接聯系,但它是培養具有遠大的理想、高尚的情操、科學的思維、可持續發展的能力和健康的心里的人才,為進一步學習提供方法論的不可缺少的課程。基于學校開展課程建設的“雙百工程”,從公共選修課著手,打造了藍色海洋類、人文與社科類、藝術與體育類、自然科學與技術類共100門校級精品視頻公開課。其中藍色海洋類公共選修課有利于進一步加深學生的海洋知識背景。(2)蔚藍(學科基礎課)包括復變函數、電路理論、信號與系統、模擬電子技術、數字電子技術、高頻電子技術、數字信號處理、微機原理與應用、電磁場與電磁波、單片機原理與接口技術、通信原理等。學科基礎課是通信工程專業學生必須具有的基本知識結構,為專業課程提供有效的支撐,使學生具備本專業的基礎理論和基本工程應用能力,有獨立獲取知識、提出問題、分析問題和解決問題的能力及開拓創新精神,為學生后續學習專業方向課打下堅實的基礎。(3)湛藍(專業課)包括專業必修課(電子線路仿真、電子線路CAD、移動通信、計算機通信、DSP技術與應用)、專業方向課、專業任選課(C++高級語言程序設計、隨機信號處理、電視原理與技術、現代通信系統仿真技術、計算機網絡安全、嵌入式系統開發技術、數據結構C、擴頻通信、通信工程專業英語)。通過對其他高校相同專業的大量調研,反復論證比較,通信工程專業設立兩個專業方向:通信工程(程控交換技術、船舶通信、光纖通信)、計算機通信(數字通信、多媒體通信技術、計算機網絡技術)。通信專業依托海洋信息技術,在船舶通信、船舶導航、海洋漁業3S技術等方面進行了卓有成效的嘗試,同時,緊隨時代的發展,對部分課程進行壓縮和調整,開設一些學生喜愛的,又能與現實接軌的課程,如擴頻通信、嵌入式系統開發技術等選修課。(4)深藍(專業集中實踐環節)包括模擬電子技術課程設計、數字電子技術課程設計、電子線路仿真課程設計、電子線路CAD上機、高頻電子技術課程設計、現代通信系統仿真技術上機、通信原理課程設計、單片機原理與接口技術課程設計、通信工程專業教學實習、通信工程專業實習、通信工程專業畢業設計(論文)等。專業集中實踐環節對培養通信專業逐步樹立工程觀念、提高解決工程實際問題的能力和創新能力,有著極為重要的作用。

3強化實踐環節,培養提高創新能力

通信工程專業將實踐環節作為培養學生創新精神和實踐能力的主要途徑,制定了科學合理的實踐教學方案,構建了多層次、全程化實踐教學體系,較好地保證了通信工程專業實踐教學的需要。堅持實踐教學與理論教學并重、實踐教育與創新教育結合,對構成實踐教學的各個要素進行整體設計,所有的實踐環節圍繞培養學生實踐動手能力和創新能力而展開,把實踐環節分成實驗教學、課程設計、實習、畢業論文(設計)、科技創新五個模塊,模塊之間銜接緊密、層層推進,為學生從入門到提高再到創新夯實基礎。

3.1實驗教學

實驗教學模塊主要依托遼寧省海洋信息技術重點實驗室、遼寧省實驗教學示范中心,以提高實驗動手能力為主線,以掌握基本實驗技能和方法、融會貫通科學知識、促進創新思維為主要教學目標。加強基礎課、主干課實驗;實驗內容優化配合,避免重復或脫節;增加設計性、綜合性實驗的比重,形成基本實驗、選做實驗、設計性和綜合性實驗組成的立體化實驗結構;對含有實驗的課程,加大實驗教學在整個課程考核中的比例;鼓勵學生自主設計實驗。在2013版培養方案和教學大綱中都有體現。針對不同課程的特點,有選擇地在教學過程中引入仿真實驗環節,以緩解實驗設備和空間的緊張情況,有效擴展實驗空間和時間,節省資金。

3.2課程設計

課程設計著眼點是把理論學習與工程實踐相結合,讓學生初步掌握設計的程序和方法。一般以單門課或課程群為主選擇題目,它是畢業設計的初級階段。課程設計教學中壓縮驗證性課題,增加能夠體現設計型、綜合型和創造性的課題。在課程設計教學設計過程中,鼓勵學生自主選題,自行討論方案,自己組織實施,給予學生自我發揮的余地,充分激發學生的創造性思維,為學生個性的發揮和創造能力的鍛煉創造條件。

3.3實習

以校內外實習基地為平臺,以使學生學會理論聯系實際、建立工程意識和鍛煉實際操作技能為主要教學目的,并且通過接觸社會,增強學生的勞動觀念和社會責任感。目前,通信工程專業校外實習基地2個(人民4810廠,北京尚觀科技有限公司大連分公司),合作的企事業單位有18個(渤海船舶重工有限責任公司等),同時學校也正在積極運作與通信公司合作。到企業參觀實習和請企業技術專家來校講座,通過參觀和專家公開課的形式,使學生對企業文化、船舶通信及導航設備的發展現狀與趨勢和本行業領域的前沿技術等有所了解,有利于學生學習目標的確定和職業素質的提高。

3.4畢業論文(設計)

以學院各類實驗室、校內外實習基地為平臺,學生通過完成畢業論文(設計),在綜合運用專業知識能力、外語和計算機應用能力、信息資料檢索和收集能力、論文撰寫能力和解決實際問題等能力上有較大提高。為切實保障畢業論文(設計)的質量,從以下幾方面進行加強:①精心設計備選題目,組織開題報告。學生選題后,在指導教師指導下,查閱文獻和撰寫文獻綜述,并精心組織好開題報告,以保證畢業論文的先進性、可行性;②加強畢業論文的中期檢查,以保證畢業論文在有限的時間內按質按量完成;③建立畢業論文答辯規范和質量標準,在畢業論文答辯期間開展“畢業論文檢查周”活動,有效提升了畢業論文的質量。④學校出臺了《大連海洋大學本科生學位論文學術規范檢測暫行辦法》,針對畢業的本科生的學位論文進行了學術不端行為的檢測,有效地杜絕了學術不端行為。3.5科技創新以各類興趣小組和科技社團、大學生科技創新基地、科研實驗室為平臺,學生通過參加大學生創新創業訓練計劃項目、科學研究等活動,使創新意識和能力得到進一步培養和提高。低年級的學生專業基礎還比較薄弱,鼓勵他們參加興趣小組或者科技社團,以增加學生對創新的認識,提高學生對創新的興趣;高年級的學生參加各種校內外的競賽,使學生在競賽過程中自主學習、自我探索、自我發現。目前,通信工程專業學生在教師有針對性的訓練下,參加了“飛思卡爾杯”全國大學生智能汽車競賽、“大唐杯”全國大學生移動通信技術大賽、“挑戰杯”大學生課外學術科技作品競賽、全國大學生電子設計大賽等,并取得了優異的成績。

4結語

大連海洋大學通信工程專業作為涉海高校的“非特色”專業,在復合性應用型培養目標的前提下充分利用和挖掘自己的優勢資源,發揮地方特色、行業特色;在加強學生思想道德教育和身心素質培養的同時,主動適應國家和遼寧省沿海經濟帶發展的新需求,抓住實踐能力和創新精神培養的核心,對通信專業的人才培養模式進行調整,使之更好地符合學校的定位與專業培養目標的要求,從而更好地適應社會需要,符合高等教育的發展趨勢,并在實踐中不斷探索與發展。

主要參考文獻

[1]李松松,郭顯久,等.電子信息工程專業人才培養模式的探索與實踐[J].中國電力教育.2011(22):51-52.

[2]劉冬,石煥玉,等.通信工程本科專業應用型人才培養模式研究[J].吉林省教育學院學報,2013,5(29):72-73.

[3]江海,田春艷.機械類應用型本科人才培養模式的探索與實踐[J].裝備制造技術,2010(3):159-160.

[4]焦冬莉,李晉生,等.應用型通信人才培養的實踐教學體系改革[J].實驗室研究與探索,2012,31(9):128-130.

第6篇

大連海洋大學是我國北方地區唯一的一所以海洋和水產學科為特色,多學科協調發展的涉海高等院校,為振興遼寧老工業基地,適應遼寧省及全國沿海省市對海洋漁業通信工程發展的需要,發展區域經濟,滿足我國和全省經濟建設對海洋漁業通信工程專業人才的需求,大力發展信息產業建設,通信工程專業自2003年開始招生。在開辦的這十二年時間里,我們下大力氣,狠抓專業建設規范,注重教學質量。隨著本專業師資力量的逐步增強,我們對本專業的發展現狀、發展規律的深入研究把握,對專業定位的認識逐步統一,大連海洋大學通信工程專業的特色目標和人才培養目標逐步清晰明確。

1培養目標

大連海洋大學信息工程學院通信工程專業是從學校的學科專業結構特點和學科特色出發,合理配置學校的教學資源,在電子信息工程、通信工程、自動化、計算機科學與技術、船舶與海洋工程和航海技術的學科交叉基礎上設立的專業。學校以提升人才培養質量為核心,立足遼寧,面向黃、渤海,輻射全國,為區域經濟建設服務,為國家水產和海洋事業服務,致力于培養德、智、體、美全面發展,知識面寬,基礎扎實,綜合素質高,具有創新精神和實踐能力,敬業、專業、樂業、創業的復合性應用型人才的人才培養戰略。在人才培養過程中注重培養學生的自主性、研究性學習的能力和分析問題、解決問題的能力,結合地方經濟社會發展需要確定本專業的培養目標、任務和要求,加強海洋漁業通信方面的特色教育。在多年辦學經驗的基礎上,經多方調研,結合本校實際,制定并逐步完善了通信工程專業的培養目標:以培養德、智、體、美全面發展,熟練掌握通信技術、通信系統和通信網絡的基本理論、基本知識和基本技能與方法,并具備電子和計算機技術等方面知識,具有較強的工程實踐能力,能夠從事固定通信、移動通信及船舶通信等現代通信系統及設備的研究、設計、開發與應用的,具有海洋、漁業科學背景的人才。

2課程體系的改革和優化

課程體系主要包括課程設置、教學內容及課程結構,是教學思想、教育理念的具體化,也是實現創新能力培養與綜合素質提高的保證。課程設置是否科學,教學內容是否合理,直接影響創新能力的培養與綜合素質的提高。按照我校建設“藍色大學”理念,構建了通信工程專業藍色人才培養方案。培養方案堅持“加強通識教育、拓寬學科基礎、凝練專業方向、提升實踐能力、培養創新精神”的人才培養原則,優化人才培養過程,構建課內、課外一體化的培養模式,依照“淺藍、蔚藍、湛藍、深藍”的藍色課程體系,用藍色課程元素來承載水的精神與海的文化,延伸至涉海涉水教學內容要素。(1)淺藍(通識課程)包括公共基礎課(思想政治理論課、大學外語、大學計算機基礎、高等數學、大學物理、體育等),公共選修課(軍事理論、健康與安全教育、選修課),公共集中實踐環節(軍訓)。通識課程雖然不一定與通信專業有直接聯系,但它是培養具有遠大的理想、高尚的情操、科學的思維、可持續發展的能力和健康的心里的人才,為進一步學習提供方法論的不可缺少的課程。基于學校開展課程建設的“雙百工程”,從公共選修課著手,打造了藍色海洋類、人文與社科類、藝術與體育類、自然科學與技術類共100門校級精品視頻公開課。其中藍色海洋類公共選修課有利于進一步加深學生的海洋知識背景。(2)蔚藍(學科基礎課)包括復變函數、電路理論、信號與系統、模擬電子技術、數字電子技術、高頻電子技術、數字信號處理、微機原理與應用、電磁場與電磁波、單片機原理與接口技術、通信原理等。學科基礎課是通信工程專業學生必須具有的基本知識結構,為專業課程提供有效的支撐,使學生具備本專業的基礎理論和基本工程應用能力,有獨立獲取知識、提出問題、分析問題和解決問題的能力及開拓創新精神,為學生后續學習專業方向課打下堅實的基礎。(3)湛藍(專業課)包括專業必修課(電子線路仿真、電子線路CAD、移動通信、計算機通信、DSP技術與應用)、專業方向課、專業任選課(C++高級語言程序設計、隨機信號處理、電視原理與技術、現代通信系統仿真技術、計算機網絡安全、嵌入式系統開發技術、數據結構C、擴頻通信、通信工程專業英語)。通過對其他高校相同專業的大量調研,反復論證比較,通信工程專業設立兩個專業方向:通信工程(程控交換技術、船舶通信、光纖通信)、計算機通信(數字通信、多媒體通信技術、計算機網絡技術)。通信專業依托海洋信息技術,在船舶通信、船舶導航、海洋漁業3S技術等方面進行了卓有成效的嘗試,同時,緊隨時代的發展,對部分課程進行壓縮和調整,開設一些學生喜愛的,又能與現實接軌的課程,如擴頻通信、嵌入式系統開發技術等選修課。(4)深藍(專業集中實踐環節)包括模擬電子技術課程設計、數字電子技術課程設計、電子線路仿真課程設計、電子線路CAD上機、高頻電子技術課程設計、現代通信系統仿真技術上機、通信原理課程設計、單片機原理與接口技術課程設計、通信工程專業教學實習、通信工程專業實習、通信工程專業畢業設計(論文)等。專業集中實踐環節對培養通信專業逐步樹立工程觀念、提高解決工程實際問題的能力和創新能力,有著極為重要的作用。

3強化實踐環節,培養提高創新能力

通信工程專業將實踐環節作為培養學生創新精神和實踐能力的主要途徑,制定了科學合理的實踐教學方案,構建了多層次、全程化實踐教學體系,較好地保證了通信工程專業實踐教學的需要。堅持實踐教學與理論教學并重、實踐教育與創新教育結合,對構成實踐教學的各個要素進行整體設計,所有的實踐環節圍繞培養學生實踐動手能力和創新能力而展開,把實踐環節分成實驗教學、課程設計、實習、畢業論文(設計)、科技創新五個模塊,模塊之間銜接緊密、層層推進,為學生從入門到提高再到創新夯實基礎。

3.1實驗教學

實驗教學模塊主要依托遼寧省海洋信息技術重點實驗室、遼寧省實驗教學示范中心,以提高實驗動手能力為主線,以掌握基本實驗技能和方法、融會貫通科學知識、促進創新思維為主要教學目標。加強基礎課、主干課實驗;實驗內容優化配合,避免重復或脫節;增加設計性、綜合性實驗的比重,形成基本實驗、選做實驗、設計性和綜合性實驗組成的立體化實驗結構;對含有實驗的課程,加大實驗教學在整個課程考核中的比例;鼓勵學生自主設計實驗。在2013版培養方案和教學大綱中都有體現。針對不同課程的特點,有選擇地在教學過程中引入仿真實驗環節,以緩解實驗設備和空間的緊張情況,有效擴展實驗空間和時間,節省資金。

3.2課程設計

課程設計著眼點是把理論學習與工程實踐相結合,讓學生初步掌握設計的程序和方法。一般以單門課或課程群為主選擇題目,它是畢業設計的初級階段。課程設計教學中壓縮驗證性課題,增加能夠體現設計型、綜合型和創造性的課題。在課程設計教學設計過程中,鼓勵學生自主選題,自行討論方案,自己組織實施,給予學生自我發揮的余地,充分激發學生的創造性思維,為學生個性的發揮和創造能力的鍛煉創造條件。

3.3實習

以校內外實習基地為平臺,以使學生學會理論聯系實際、建立工程意識和鍛煉實際操作技能為主要教學目的,并且通過接觸社會,增強學生的勞動觀念和社會責任感。目前,通信工程專業校外實習基地2個(人民4810廠,北京尚觀科技有限公司大連分公司),合作的企事業單位有18個(渤海船舶重工有限責任公司等),同時學校也正在積極運作與通信公司合作。到企業參觀實習和請企業技術專家來校講座,通過參觀和專家公開課的形式,使學生對企業文化、船舶通信及導航設備的發展現狀與趨勢和本行業領域的前沿技術等有所了解,有利于學生學習目標的確定和職業素質的提高。

3.4畢業論文

(設計)以學院各類實驗室、校內外實習基地為平臺,學生通過完成畢業論文(設計),在綜合運用專業知識能力、外語和計算機應用能力、信息資料檢索和收集能力、論文撰寫能力和解決實際問題等能力上有較大提高。為切實保障畢業論文(設計)的質量,從以下幾方面進行加強:①精心設計備選題目,組織開題報告。學生選題后,在指導教師指導下,查閱文獻和撰寫文獻綜述,并精心組織好開題報告,以保證畢業論文的先進性、可行性;②加強畢業論文的中期檢查,以保證畢業論文在有限的時間內按質按量完成;③建立畢業論文答辯規范和質量標準,在畢業論文答辯期間開展“畢業論文檢查周”活動,有效提升了畢業論文的質量。④學校出臺了《大連海洋大學本科生學位論文學術規范檢測暫行辦法》,針對畢業的本科生的學位論文進行了學術不端行為的檢測,有效地杜絕了學術不端行為。

3.5科技創新

以各類興趣小組和科技社團、大學生科技創新基地、科研實驗室為平臺,學生通過參加大學生創新創業訓練計劃項目、科學研究等活動,使創新意識和能力得到進一步培養和提高。低年級的學生專業基礎還比較薄弱,鼓勵他們參加興趣小組或者科技社團,以增加學生對創新的認識,提高學生對創新的興趣;高年級的學生參加各種校內外的競賽,使學生在競賽過程中自主學習、自我探索、自我發現。目前,通信工程專業學生在教師有針對性的訓練下,參加了“飛思卡爾杯”全國大學生智能汽車競賽、“大唐杯”全國大學生移動通信技術大賽、“挑戰杯”大學生課外學術科技作品競賽、全國大學生電子設計大賽等,并取得了優異的成績。

4結語

大連海洋大學通信工程專業作為涉海高校的“非特色”專業,在復合性應用型培養目標的前提下充分利用和挖掘自己的優勢資源,發揮地方特色、行業特色;在加強學生思想道德教育和身心素質培養的同時,主動適應國家和遼寧省沿海經濟帶發展的新需求,抓住實踐能力和創新精神培養的核心,對通信專業的人才培養模式進行調整,使之更好地符合學校的定位與專業培養目標的要求,從而更好地適應社會需要,符合高等教育的發展趨勢,并在實踐中不斷探索與發展。

主要參考文獻

[1]李松松,郭顯久,等.電子信息工程專業人才培養模式的探索與實踐[J].中國電力教育.2011(22):51-52.

[2]劉冬,石煥玉,等.通信工程本科專業應用型人才培養模式研究[J].吉林省教育學院學報,2013,5(29):72-73.

[3]江海,田春艷.機械類應用型本科人才培養模式的探索與實踐[J].裝備制造技術,2010(3):159-160.

[4]焦冬莉,李晉生,等.應用型通信人才培養的實踐教學體系改革[J].實驗室研究與探索,2012,31(9):128-130.

第7篇

1.實驗室條件和環境較差

由于大部分學校都在進行學生的擴招和學校的擴建,通信專業的人數也會大幅度地增加,學校在擴建過程中會存在資金問題,導致對于實驗室儀器設備的資金投入不足,設備更新緩慢,與現代快速發展的通信技術嚴重脫節,學生在實踐過程中學到的知識也是幾年前的,已經過時。同時在擴招過程中該專業人數大幅度增加,導致實踐教學的場地緊缺,存在多人共用一套實驗設備進行實踐學習的情況,這就導致實踐教學的質量不是很理想。

2.實踐教學的老師對于這門課程不夠重視

與老師熟知的理論教學相比較,實踐教學操作十分麻煩,其中各種各樣的環節讓人頭疼,長期從事理論教學的老師難以適應這樣的教學過程,他們就會選擇逃避,沒有將實踐教學真正地開展起來,學生只是進行一些簡單的操作,無法學到真正的知識,沒有獲得實際的動手能力和創新能力。有些學生在老師的影響下也是持比較消極的態度,認為該專業的實踐教學可有可無,沒有十分重要的存在意義。

3.提供給學生的實習單位較少

有些學校處在偏遠地區,當地沒有大型的通信企業,城市的經濟相對較為落后,只有一些移動、聯通、電信的服務型營業廳,沒有從事通信工程方面的產品生產的大型公司,所以學生很少有機會進行實習,如果到深圳、廣州等通信產業發達的城市進行實習,不僅組織起來比較困難,而且需要大量的資金投入,學生過去之后的管理問題也不是特別的方便。所以老師只是為學生講解一些實習的經驗供學生參考,學生學習效果不明顯。

4.集中式的實踐教學多是形式主義

在通信工程專業的實踐教學中大多采取的是集中式的實踐學習,在這個時間段學生要進行畢業論文的撰寫,學生在時間上存在較大的問題,他們沒有足夠的時間寫自己的畢業論文,往往就在網絡上下載一些資料,選擇一些沒有創新意義的主題,抄襲問題不可避免。學生專業工程實踐的時間和畢業論文的時間沖突,學生為了順利畢業,把很多時間用在寫畢業論文上面,集中實踐的效果從而受到影響,這樣就導致集中式的專業實踐教學形式化,沒有達到想要的效果。

二、通信工程專業實踐教學環節教學改革的主要方式

1.加強通信工程專業課程體系的建設

通信工程專業的課程設計主要培養學生的能力,科學合理地構造該專業的課程模體系和專業模塊,根據不同學生的不同能力、不同愛好,老師為他們選擇合適的模塊,讓教學的基本要素和基本內容與學生能力密切聯系。

(1)通信基礎課程。學生主要學習的課程有信號與系統、通信原理、通信電子線路等,在對這些理論基礎學習的時候注重培養學生的信息分析處理能力,為以后的專業課奠定基礎,讓學生對通信系統有一定的分析和設計能力。

(2)通信技術課程。學生需要學習的課程有移動通信、光纖通信、計算機通信網、交換技術等等,主要讓學生能夠圍繞著通信技術進行其中的理論學習,掌握現代的通信技術,將其應用到通信行業,促進通信行業的發展,促進新產品的開發。

(3)專業任選課程。學生學習的主要課程有電子測量技術、數字圖像處理、光傳輸和光交換、電信業務開發等等,這些課程主要是根據學生興趣開設的專業方向課程,相對來說難度大一些,主要是讓學生有一個學習的專業方向,學生根據自己的特長和興趣學習專業課程,學生學習的積極性和主動性也會提高,視野更加開闊,為以后工作打下必要的專業基礎。

2.加強通信工程專業實踐教學體系的建設

通信工程專業課程基本體系的建設要以實踐教學體系為重點,在通信工程專業的實踐教學環節中,其設計性、科學性、創新性要全面地體現出來,讓每個學生在實踐中都能夠提升自身的能力,并且要注重學生整體能力的培養,加強實踐教學的應用性,讓學生在實踐中分析問題、解決問題,對于課程設計、畢業設計重點管理和監督,學生在實踐中有明確的目標,各自有明確的任務和分工,全面構造通信工程專業實踐教學體系,為學生在未來的就業競爭中提供有效保障。

3.加強通信工程專業實驗室的建設

在通信工程專業實踐中,實驗室是學生的主要實踐地點,學校應當關注實驗室的設備的更新,對實驗室進行科學合理的管理,加大資金的投入,為學生創造良好的實驗室學習和實踐條件,同時實驗室也要制定相應的管理制度,損壞實驗儀器的學生應當賠償一定的費用,學生在實驗室進行實驗之后要打掃衛生,保障實驗室的良好環境。實驗室應當長期對學生開放,為學生提供良好的實驗環境和條件。

4.加強校企協作,在校外投資實習基地

實習是實踐教學的重要組成部分,學生總是在實驗室中進行實驗無法學到真正的工作經驗,只有將學生帶到通信工程的企業,讓他們在其中進行實際的動手操作,他們才會學到實際有用的東西。因此,學校就必須與校外通信企業進行良好的溝通,學校與企業之間聯合進行人才的培養,共同制定實習方案,讓學生參與到實際的測試、開發、設計中,增加學生的興趣,畢業后學校為該企業提供專業型人才,保持與該企業的良好聯系。如果條件允許,學校可以在校外投入資金建設校企,這樣就更加方便學生進行實習。

三、結束語

主站蜘蛛池模板: 日本三级日产三级国产三级| 免费高清视频日本一区二区三区| 中文字幕一区在线播放| 日韩午夜免费一区二区三区视频| 国产精品一级免费AV| 亚洲国产韩国一区二区| 99精品国产高清一区二区色欲| 精品人无码一区二区三区49| 亚洲欧美日韩国产精品蜜月a| 三级片中文字幕一区二区| 中文字幕一区二区三区三级| 色8欧美日韩国产无线码| 国产大学生视频在线观看一区| 亚洲日韩精品高潮无码久久| 国产成人无码区免费网站| 国产亚洲精品AAAAAAA片| 精品国产偷自产在线| 国产91在线播放中文 | 亚洲国产v高清在线观看| 无码中文字幕热热久久| 人妻熟妇乱又伦精品视频| 日韩成人久久久影视网站| 国产亚洲精品岁国产微拍精品| 国产精品久久久久久网站| 一级做a爰黑人有硬又粗| 爽爽影院线观看免费视频| 国产美女牲交视频黄页| 不卡一区二区三区视频免费观看 | 日本欧美一区二区三区在线| 日韩精品a在线一区二区| 天天色天天射天天综合网| 996热精品视频在线观看| 成人无遮挡毛片免费看| 亚洲AV无码精品一区二区在线| 人妻无码99精品| 日韩中文字幕无线码| 国产视频只有无码精品| 无码中文AV波多野吉衣一区| 中文字幕曰韩一区二区不卡| 中文字幕在线免费播放| 无码a级毛片免费视频下载|